В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
дада211
дада211
11.05.2021 09:36 •  Математика

Объесните схему горнера на примерах и напишите его доказательство

Показать ответ
Ответ:
nikrozumenko
nikrozumenko
09.10.2020 06:42
Схема Горнера деления многочлена

Pn(x)=∑i=0naixn−i=a0xn+a1xn−1+a2xn−2+…+an−1x+an

на бином x−a. Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена. Первым элементом второй строки будет число a, взятое из бинома x−a:

После деления многочлена n-ой степени на бином x−a, получим многочлен, степень которого на единицу меньше исходного, т.е. равна n−1. Непосредственное применение схемы Горнера проще всего показать на примерах.

Пример №1

Разделить 5x4+5x3+x2−11 на x−1, используя схему Горнера.

Решение

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена 5x4+5x3+x2−11, расположенные по убыванию степеней переменной x. Заметьте, что данный многочлен не содержит x в первой степени, т.е. коэффициент перед x в первой степени равен 0. Так как мы делим на x−1, то во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число 5, просто перенеся его из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу: 1⋅5+5=10:

Аналогично заполним и четвертую ячейку второй строки: 1⋅10+1=11:

Для пятой ячейки получим: 
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота