Обозначьте условие расчета по схеме. А) Мужчина на двух мотоциклах ехал в противоположных направлениях со скоростью 50 и 60 км / ч. Через сколько часов они будут на расстоянии 440 км?
Б) Мужчина на двух мотоциклах ехал в противоположных направлениях со скоростью 50 и 60 км / ч. Через сколько часов они будут на расстоянии 440 км?
В) Мужчина на двух мотоциклах двинулся в одном направлении со скоростью 50 и 60 км / ч. Через сколько часов они будут на расстоянии 440 км?
Натуральные числа - это числа, которые используются для счёта предметов (1, 2, 3 ...). n - первое натуральное число n + 1 - второе натуральное число n + 2 - третье натуральное число n + 3 - четвёртое натуральное число Уравнение: (n + 2) * (n + 3) - n * (n + 1) = 58 n^2 + 2n + 3n + 6 - n^2 - n = 58 (n^2 - n^2) + (2n + 3n - n) + 6 = 58 4n + 6 = 58 4n = 58 - 6 4n = 52 n = 52 : 4 = 13 - первое число 13 + 1 = 14 - второе число 13 + 2 = 15 - третье число 13 + 3 = 16 - четвёртое число ответ: 13, 14, 15, 16.
Итак, для ограничения по целым степеням не более 27 по модулю, вычислимыми оказались результаты ~957 млн выводов и среди них 356 являются выводами числа 5479 и ни один вывод (а соответственно ни один вывод с операциями сложения, вычитания, конкатенации, умножения и деления, а также некоторые выводы с этими же операциями и некоторыми целыми степенями) не является выводом числа 10958. В чем его особенность?
Призраки и тени
Для задачи, аналогичной задаче Танежи в восходящем порядке, но с начальными векторами длины 8, такими как $(1, 2, ... , 8)$ и $(2, 3, ... , 9)$ количество вариантов меньше, а с иррациональными, комплексными и длинными целыми значениями элементов векторов (1) — (7) справляются оптимизированные алгоритмы Вольфрам Математики. Так, достоверно известно, что ни один вывод в $(1, 2, ... , 9)$, имеющий на 8-ой итерации оператор конкатенации, сложения или вычитания не может привести к значению 10958. Какие возможности для дальнейшего решения это даёт?
Число 10958 является полупростым. И если последняя итерация вывода не содержит сложение, вычитание и конкатенацию, то один из операндов на 8-ой итерации будет гарантировано включать 5479 в некоторой степени, за исключением двух случаев:
когда операнды кратны некоторым комплексно-сопряжённым
когда один из операндов содержит логарифм, основание или показатель которого кратны 5479
n - первое натуральное число
n + 1 - второе натуральное число
n + 2 - третье натуральное число
n + 3 - четвёртое натуральное число
Уравнение:
(n + 2) * (n + 3) - n * (n + 1) = 58
n^2 + 2n + 3n + 6 - n^2 - n = 58
(n^2 - n^2) + (2n + 3n - n) + 6 = 58
4n + 6 = 58
4n = 58 - 6
4n = 52
n = 52 : 4 = 13 - первое число
13 + 1 = 14 - второе число
13 + 2 = 15 - третье число
13 + 3 = 16 - четвёртое число
ответ: 13, 14, 15, 16.
Проверка: 15 * 16 - 13 * 14 = 58
240 - 182 = 58
58 = 58
Итак, для ограничения по целым степеням не более 27 по модулю, вычислимыми оказались результаты ~957 млн выводов и среди них 356 являются выводами числа 5479 и ни один вывод (а соответственно ни один вывод с операциями сложения, вычитания, конкатенации, умножения и деления, а также некоторые выводы с этими же операциями и некоторыми целыми степенями) не является выводом числа 10958. В чем его особенность?
Призраки и тени
Для задачи, аналогичной задаче Танежи в восходящем порядке, но с начальными векторами длины 8, такими как $(1, 2, ... , 8)$ и $(2, 3, ... , 9)$ количество вариантов меньше, а с иррациональными, комплексными и длинными целыми значениями элементов векторов (1) — (7) справляются оптимизированные алгоритмы Вольфрам Математики. Так, достоверно известно, что ни один вывод в $(1, 2, ... , 9)$, имеющий на 8-ой итерации оператор конкатенации, сложения или вычитания не может привести к значению 10958. Какие возможности для дальнейшего решения это даёт?
Число 10958 является полупростым. И если последняя итерация вывода не содержит сложение, вычитание и конкатенацию, то один из операндов на 8-ой итерации будет гарантировано включать 5479 в некоторой степени, за исключением двух случаев:
когда операнды кратны некоторым комплексно-сопряжённым
когда один из операндов содержит логарифм, основание или показатель которого кратны 5479