В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
кот1555
кот1555
13.05.2021 11:53 •  Математика

Объясните , как это решается


Объясните , как это решается

Показать ответ
Ответ:
miki65
miki65
08.05.2022 10:52

Пошаговое объяснение:

а) Вычтем из числа 100...00(Допустим в нём n нулей) число вида 99...99, в котором n девяток , так как кол-во нолей чётно, то и кол-во девяток тоже чётно. Теперь докажем, что в числе вида 99...99(Допустим k девяток), в котором чётное кол-во девяток кратно 11, представим это число в виде суммы 99*10^(k-2)+99*10^(k-4)+...+99 = 99(10^(k-2)+10^(k-4)+...+1). Очевидно, что 99 кратно 11, а значит число вида 99...99(чётное число девяток) кратно 11.

Теперь вычтем из числа 10...00(n нулей) число 99...99(n девяток), очевидно, что разность равна 1, так как 99...99 кратно 11, то разность имеет такой же остаток при делении на 11, как и искомое число. А значит число вида 10...00 с чётным числом нулей при делении на 11 даёт остаток 1.

б) Представим число 10...00 с нечётным числом нулей в виде произведение 10...00(уже с чётным числом нулей) на 10. В пункте а было доказано, что число вида 10...00 с чётным числом нулей даёт остаток 1 при делении на 11. По свойству остатков при умножении числа на какое-то число, то и его остаток умножается на это же число. Из этого следует, что остаток 1 умножается на 10. А значит число вида 10...00 с нечётным числом нулей при делении на 11 даёт остаток 10.

0,0(0 оценок)
Ответ:
ilona10022002
ilona10022002
03.12.2022 13:11

3

Пошаговое объяснение:

По условию сумма каждых трёх подряд идущих чисел делится нацело на первое число этой тройки. Пусть первым натуральным числом будет M. Тогда суммой трёх подряд идущих чисел будет

S= M + (M + 1) + (M + 2) = 3·M + 3.

Это число делится на на первое число этой тройки, то есть на M:

S : M = (3·M + 3) : M = 3 + 3/M.

Чтобы это число было целым число M должен быть делителем 3. А таких натуральных чисел всего два: 1 и 3.

Пусть M = 1. Получим последовательных натуральных чисел

1, 2, 3 и последнее число строки нечётно.

Пусть M = 3. Получим последовательных натуральных чисел

3, 4, 5 и последнее число строки нечётно.

Значит, в строке всего 3 числа.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота