Нок-наименьшее общее кратное как вы знаете для каждого числа существует бесконечно много чисел кратных ему. выпишем несколько первых натуральных чисел, кратных числу 8. это числа 8;16;24:32;40;48; и т.д. выпишем несколько первых натуральных чисел,кратных числу 12. это 12;24;36;48; и т.д. так как числа 24;48;... являются кратными и 8 и 12. то эти числа являются общими кратным 8 и 12 можно заметить, что нет наибольшего общего кратного, но есть наименьшее-это 24 его называют наименьшим общим кратным чисел 8 и 12 записывается так нок (8;12)=24 решить примеры я не успеваю попробуй сама
a= 3
b= -4
Пошаговое объяснение:
Если при некоторых a и b:
F(x)= ax^4+bx^3+1 нацело делится на (x-1)^2, то и делится на x-1.
Откуда по теореме Безу: F(1) = a+b+1 = 0 → b = -(a+1)
Далее может быть решения:
Первый
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = ax^4-(a+1) * x^3 +(a+1) - a =
= a(x^4-1) - (a+1)(x^3-1) = a(x-1)(x+1)(x^2+1)-(a+1)(x-1)(1+x+x^2) =
= (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) )
Поскольку (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) ) нацело делится на (x-1)^2, то
G(x) = a(x+1)(x^2+1) - (a+1)(1+x+x^2) делится на x-1 ,таким образом, по теореме Безу снова имеем:
G(1) = 4a -3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Второй
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = (x-1)^2* g(x) , где g(x) - некоторый многочлен.
Продифференцируем обе части равенства:
F'(x) = 4ax^3-3(a+1)x^2 = 2(x-1) * g(x) + (x-1)^2 * g'(x) = (x-1) * r(x), где r(x) - некоторый многочлен.
Но тогда F'(x) так же делится на (x-1) , то есть по теореме Безу:
F'(1) = 4a-3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Третий
По обобщенной теореме Виета в данном уравнении:
x1 * x2 * x3 * x4 = 1\a
x1 * x2 * x3 + x1 * x2 * x4 + x4 * x2 * x3 + x1 * x4 * x3 = 0
x1 * x2 + x1 * x3 + x1 * x4 + x2 * x3 + x2 * x4 + x3 * x4 = 0
Учитывая, что x1 = x2 = 1 имеем:
x3 + x4 +2 * x3 * x4 = 0
1 + 2 * x3 + 2 * x4 + x3 * x4 = 0
Умножаем первое уравнение на 2 и вычитаем из него второе :
3 * x3 * x4 -1 = 0
x3 * x4 = 1/3
x1 * x2 * x3 * x4 =1^2 * 1/3 = 1/3 = 1/a → a = 3; b = -4
как вы знаете для каждого числа существует бесконечно много чисел кратных ему.
выпишем несколько первых натуральных чисел, кратных числу 8. это числа 8;16;24:32;40;48; и т.д.
выпишем несколько первых натуральных чисел,кратных числу 12. это 12;24;36;48; и т.д.
так как числа 24;48;... являются кратными и 8 и 12.
то эти числа являются общими кратным 8 и 12
можно заметить, что нет наибольшего общего кратного, но есть наименьшее-это 24
его называют наименьшим общим кратным чисел 8 и 12
записывается так
нок (8;12)=24
решить примеры я не успеваю попробуй сама