Девочки Маша, Лера и Настя хотят устроить квадратную клумбу.
Маша предлагает натянуть на четырёх колышках по периметру клумбы 4 куска верёвки одинаковой длины:(рисунок а).
Лера предлагает натянуть на четырёх колышках параллельно два куска верёвки одинаковой длины, расстояние между которыми будет равно длине натянутых кусков (рисунок б).
Настя предлагает взять два куска верёвки одинаковой длины, отметить узелком их середины и натянуть верёвки так, чтобы они пересекались в серединах и были перпендикулярны (рисунок в).
У какой из девочек обязательно получится квадрат с вершинами в местах расположения колышков? Объясните ваш ответ.
Відповідь:
Покрокове пояснення:
Дано: О - центр кола. KM, NP - хорди (KM не паралельне NC).
КМ = ND. А - середина КМ. В - середина NP.
Довести: ZOAB = ZOBA.
Доведення:
Виконаємо додаткові побудови: радіуси ОК, ОМ, ON, OP.
Розглянемо ∆КОМ i ∆NОР.
КО = ОМ та N0 = ОР - радіуси, тобто КО = N0 = ОМ = ОР (за побудовою).
За умовою КМ = NP.
За III ознакою piвностi трикутників маємо: ∆КОМ = ∆NOP.
Звідси маємо: ∟OKM = ∟OPN, ∟OMK = ∟ONP.
За умовою А - середина КМ, отже, КА = КМ = 1/2КМ.
В - середина NP, отже, BN = ВР = 1/2NP.
Розглянемо ∆АОК i ∆ОРВ.
Якщо АК = РВ; OK = OP, ∟OKM = ∟OPN.
За I ознакою piвностi трикутників маємо: ∆ОАК = ∆ОВР.
Звідси маємо: ОА = ОВ.
Тобто ∆ОАВ - р1внобедрений.
За властивістю кутів при основi piвнобедреного трикутника маємо: ∟OAB = ∟OBA.
Доведено.
Девочки Маша, Лера и Настя хотят устроить квадратную клумбу.
Маша предлагает натянуть на четырёх колышках по периметру клумбы 4 куска верёвки одинаковой длины:(рисунок а).
Лера предлагает натянуть на четырёх колышках параллельно два куска верёвки одинаковой длины, расстояние между которыми будет равно длине натянутых кусков (рисунок б).
Настя предлагает взять два куска верёвки одинаковой длины, отметить узелком их середины и натянуть верёвки так, чтобы они пересекались в серединах и были перпендикулярны (рисунок в).
У какой из девочек обязательно получится квадрат с вершинами в местах расположения колышков? Объясните ваш ответ.