очень ) Найти 40% от 18
2. ( ) Найти число, если 20% его равны 7
3. ( ) Определите и запишите вид угла (острый, прямой, тупой, развёрнутый, полный).
360°; 110°; 90°; 10°; 180°;
4. ( ) Круг разделили на три сектора. Сколько градусов содержит один угол сектора, если два других угла сектора содержат 46° и 123
Здесь мы обсудим, что такое отношение чисел и что показывает отношение двух чисел.
1. Частное двух чисел называют отношением этих чисел.
Отношение чисел можно записать двумя с знака деления либо с дроби:
или
Читают: «отношение a к b».
Числа a и b называют членами отношения.
a — предыдущий член отношения, b — последующий член отношения. a и b должны быть отличны от нуля.
2. Отношения используют для сравнения двух величин.
Отношение показывает, во сколько раз первое число больше второго либо какую часть первое число составляет от второго.
Примеры отношения чисел:
1) 120:3=40
Отношение 120:3 показывает, что 120 в сорок раз больше 3.
Отношение 3/5 показывает, что 3 составляет 0,6 от 5.
3. Основное свойство отношения:
Отношение не изменится, если его члены умножить или разделить на одно и то же число, отличное от нуля.
(основное свойство отношения вытекает из основного свойства дроби).
Например,
Таким образом, отношение дробных чисел можно заменить отношением целых чисел.
4. Примеры отношения величин.
- скорость (отношение пройденного пути ко времени, за которое путь был пройден);
- производительность труда (отношение объема работы ко времени, за которое выполняется работа);
- цена ( отношение стоимости товара к количеству единиц);
- масштаб (отношение длины отрезка на карте к расстоянию между соответствующими точками на местности);
- урожайность (отношение массы собранного урожая к общей площади полей, с которой был собран урожай).
Далее мы рассмотрим равенство двух отношений и его практическое применение.
Здесь мы обсудим, что такое отношение чисел и что показывает отношение двух чисел.
1. Частное двух чисел называют отношением этих чисел.
Отношение чисел можно записать двумя с знака деления либо с дроби:
или
Читают: «отношение a к b».
Числа a и b называют членами отношения.
a — предыдущий член отношения, b — последующий член отношения. a и b должны быть отличны от нуля.
2. Отношения используют для сравнения двух величин.
Отношение показывает, во сколько раз первое число больше второго либо какую часть первое число составляет от второго.
Примеры отношения чисел:
1) 120:3=40
Отношение 120:3 показывает, что 120 в сорок раз больше 3.
Отношение 3/5 показывает, что 3 составляет 0,6 от 5.
3. Основное свойство отношения:
Отношение не изменится, если его члены умножить или разделить на одно и то же число, отличное от нуля.
(основное свойство отношения вытекает из основного свойства дроби).
Например,
Таким образом, отношение дробных чисел можно заменить отношением целых чисел.
4. Примеры отношения величин.
- скорость (отношение пройденного пути ко времени, за которое путь был пройден);
- производительность труда (отношение объема работы ко времени, за которое выполняется работа);
- цена ( отношение стоимости товара к количеству единиц);
- масштаб (отношение длины отрезка на карте к расстоянию между соответствующими точками на местности);
- урожайность (отношение массы собранного урожая к общей площади полей, с которой был собран урожай).
Далее мы рассмотрим равенство двух отношений и его практическое применение.