Разделив обе части уравнения на y, получим уравнение dy/y=tg(x)*dx, или dy/y=sin(x)*dx/cos(x), или dy/y=-d[cos(x)]/cos(x). Интегрируя, находим ln/y/=-ln/cos(x)/+ln/C/, где C - произвольная, но не равная нулю постоянная. Отсюда общее решение уравнения y=C/cos(x). Используя условие y(0)=4, получаем уравнение 4=C/1, откуда C=4. Отсюда искомое частное решение уравнения y=4/cos(x). Проверка: y'=4*sin(x)/cos²(x), dy=4*sin(x)*dx/cos²(x), y*tg(x)*dx=4*sin(x)*dx/cos²(x), так что dy=y*tg(x)*dx - следовательно, найденное решение удовлетворяет дифференциальному уравнению. Полагая x=0, находим y=4/1=4, так что решение удовлетворяет и условию y(0)=4. Следовательно, решение найдено верно.
120 * 86 60*86 12*86
= =
-12 * (- 8целых6/10) = -12 * (- 86/10) = 10 5 1
= 12*86 = 1032
1032 94 10320 -94
- = =
1032 - 9.4 = 1032 - 9целых4/10 = 1 10 10
= 10226/10 = 5113/5
ответ: y=4/cos(x).
Пошаговое объяснение:
Разделив обе части уравнения на y, получим уравнение dy/y=tg(x)*dx, или dy/y=sin(x)*dx/cos(x), или dy/y=-d[cos(x)]/cos(x). Интегрируя, находим ln/y/=-ln/cos(x)/+ln/C/, где C - произвольная, но не равная нулю постоянная. Отсюда общее решение уравнения y=C/cos(x). Используя условие y(0)=4, получаем уравнение 4=C/1, откуда C=4. Отсюда искомое частное решение уравнения y=4/cos(x). Проверка: y'=4*sin(x)/cos²(x), dy=4*sin(x)*dx/cos²(x), y*tg(x)*dx=4*sin(x)*dx/cos²(x), так что dy=y*tg(x)*dx - следовательно, найденное решение удовлетворяет дифференциальному уравнению. Полагая x=0, находим y=4/1=4, так что решение удовлетворяет и условию y(0)=4. Следовательно, решение найдено верно.