Поскольку при выкладывании по 13 и по 14 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 13 и на 14 с остатками.
Остаток от деления любого числа на 13 не может быть больше 12. По условию это число на 11 больше, чем остаток от деления на 14. Но остаток от деления на 14 тоже не равен нулю. Значит, остаток от деления на 13 может быть равен только 12. А остаток от деления на 14 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 13 с остатком 12 и на 14 с остатком 1. Проверив все числа в пределах 100, делящиеся на 14 с остатком 1, получим ответ: 77 плиток.
Поскольку при выкладывании по 13 и по 14 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 13 и на 14 с остатками.
Остаток от деления любого числа на 13 не может быть больше 12. По условию это число на 11 больше, чем остаток от деления на 14. Но остаток от деления на 14 тоже не равен нулю. Значит, остаток от деления на 13 может быть равен только 12. А остаток от деления на 14 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 13 с остатком 12 и на 14 с остатком 1. Проверив все числа в пределах 100, делящиеся на 14 с остатком 1, получим ответ: 77 плиток.
Пошаговое объяснение:
1. log3(C:27) log3C=10
по формуле loga(x/y)=logaX-logaY
a основание логарифма, в данном случае а=3
log3 (C/27)= log3C-log3 (27)
log3 (27)=3
log3 C=10
10-3=7
2. f (x)=4x^3+x-5-6Vx V-это корень кв.
находим производную ф-ии
f'(x)=12x^2+1-3/Vx
найти f'(x0) где х0=1
х0 ставим в производную функции
f'(x0)=12*1^2+1-3/V1=12+1-3=10
f'(x0)=10
3. дана ф-ия f (x)=x^2+x точка абцисс х0=2
формула уравнения касательной:
y= f (x0) + f'(x0)(x-x0) x это константа
находим производную ф-ии
f'(x)= 2x+1
f (x0)=2^2+2=4+2=6
f'(x0)=2*2+1=4+1=5
y=6+5 (x-2)=6+5x-10=5x-4
и все)