Существует только 6 вариантов расположения треугольника по вершинам восьмиугольника с несовпадающими сторонами. (если бы разрешалось совпадение строн, то тогда было бы 21) См логику - пусть тругольник уже есть. Без ограничения общности фиксируем какую-нибудь его вершину с вершиной 8-ка. Две другие могут быть в любых других 5-ти несмежных вершинах 8-ка ( не 7 - иначе для см.вершин совпадение сторон 3-ка и 8-ка). Рассмотрим вначале максимальный случай - одна из вершин треугольника находится рядом, смежно только через одну по 8-ку. Тогда посл.вершина треугольника мождет занимать любую из оставшихся 3 (не 4 - смежная по 8-ку вершина выпадает) вершин 8-ка. Аналогично эту вторую вершину треугольника можно разместить уже не смежно через одну, а уже через две от пред.случая. Тогда посл.вершина треугольника уже сможет занять только 2 положения (не 3 - иначе совпадет с одним из треугольников пред.случая). Аналогично эту вторую вершину треугольника можно разместить уже не смежно через одну, а уже через три от пред.случая. Тогда посл.вершина треугольника уже сможет занять только 1положения (не или 3 - иначе совпадет с одним из треугольников пред.случаев). В итоге 3+2+1=6 вариантов расположения треугольника по вершинам 8-ка. Всего 6, а не 21 (6+5+...+1) - как в случае когда бы разрешалось совпадение сторон 3-ка и 8-ка.
2) Первое число x , второе число y.{ x - y = 2{ x / y = - 1.2 ⇒ x = -1.2yметод подстановки:- 1.2y - y = 2- 2.2y = 2y= 2 / (-2.2) = - 20/22 = - 10/11y= - 10/11x= - 1.2 * (-10/11) = - 12/10 * (-10/11) = 12/11x = 1 1/11ответ : (1 1/11 ; -10/1
(если бы разрешалось совпадение строн, то тогда было бы 21)
См логику - пусть тругольник уже есть. Без ограничения общности фиксируем какую-нибудь его вершину с вершиной 8-ка. Две другие могут быть в любых других 5-ти несмежных вершинах 8-ка ( не 7 - иначе для см.вершин совпадение сторон 3-ка и 8-ка). Рассмотрим вначале максимальный случай - одна из вершин треугольника находится рядом, смежно только через одну по 8-ку. Тогда посл.вершина треугольника мождет занимать любую из оставшихся 3 (не 4 - смежная по 8-ку вершина выпадает) вершин 8-ка.
Аналогично эту вторую вершину треугольника можно разместить уже не смежно через одну, а уже через две от пред.случая. Тогда посл.вершина треугольника уже сможет занять только 2 положения (не 3 - иначе совпадет с одним из треугольников пред.случая).
Аналогично эту вторую вершину треугольника можно разместить уже не смежно через одну, а уже через три от пред.случая. Тогда посл.вершина треугольника уже сможет занять только 1положения (не или 3 - иначе совпадет с одним из треугольников пред.случаев).
В итоге 3+2+1=6 вариантов расположения треугольника по вершинам 8-ка.
Всего 6, а не 21 (6+5+...+1) - как в случае когда бы разрешалось совпадение сторон 3-ка и 8-ка.