Событие А - не более 2-х мальчиков - является суммой событий:
А0 - ни одного мальчика А1 - один А2 - два.
Тогда А=А0+А1+А2, а так как эти события несовместны, то P(A)=P(A0)+P(A1)+P(A2). Найдём эти вероятности.
P(A0)=(1-p)⁵=q⁵=(1-0,51)⁵=(0,49)⁵, где p=0,51 - вероятность рождения мальчика, q - вероятность рождения девочки. P(A1)=C(5,1)*p*q⁴=5*0,51*(1-0,51)⁴=2,55*(0,49)⁴, где C(n,k) - число сочетаний из n по k. P(A2)=C(5,2)*p²*q³=10*(0,51)²*(0,49)³.
Тогда P(A)=(0,49)⁵+2,55*(0,49)⁴+10*(0,51)²*(0,49)³≈0,48. ответ: ≈0,48.
А0 - ни одного мальчика
А1 - один
А2 - два.
Тогда А=А0+А1+А2, а так как эти события несовместны, то P(A)=P(A0)+P(A1)+P(A2). Найдём эти вероятности.
P(A0)=(1-p)⁵=q⁵=(1-0,51)⁵=(0,49)⁵, где p=0,51 - вероятность рождения мальчика, q - вероятность рождения девочки.
P(A1)=C(5,1)*p*q⁴=5*0,51*(1-0,51)⁴=2,55*(0,49)⁴, где C(n,k) - число сочетаний из n по k.
P(A2)=C(5,2)*p²*q³=10*(0,51)²*(0,49)³.
Тогда P(A)=(0,49)⁵+2,55*(0,49)⁴+10*(0,51)²*(0,49)³≈0,48. ответ: ≈0,48.
Пошаговое объяснение:
Подставляем значения всех возможных выражений в уравнения.
1366:
1)x+y-2=0
a) (-1;3)
-1+3-2=-3+3=0
б) (-8;6)
-8+6-2=-10+6=-4
Не подходит.
ответ (-1;3)
2)2x+y-4=0
a) (0,5;3)
2*0,5+3-4=4-4=0
б) (-3;2)
2*(-3)+2-4=-10+2=-8
Не подходит.
ответ: (0,5;3)
1367
1)2x+y-6=0
a) (3;0)
6-6=0
б) (4;-2)
8-2-6=0
в) (5;-2)
10-2-6=2
Не подходит.
г) (-1;8)
-2+8-6=0
ответ: (3;0), (4;-2), (-1;8)
2)5x-2y-8=0
а) (2;1)
10-2-8=0
б) (-3;-11,5)
-15+11,5-8=-11,5
Не подходит.
в) (-1;6)
-5-12-8=-25
Не подходит.
г) (3;3,5)
15-7-8=0
ответ: (2;1), (3;3,5)