1) подобные оба числа. ответ: -3х
2) подобные оба числа. ответ: -7х
3) подобные оба числа. ответ: -6х
4) подобные все числа. ответ: -6а
5) подобные все числа. ответ: -2а
6) подобные все числа. ответ: -7а
7) подобные 5х и 6х. ответ: 2а+х
8) 1 группа подобных -4а и -3а, вторая - -5х и 7х. ответ: -7а+12х
9) 1 группа 6а, -9а и -а, вторая - -7х и 15х. ответ: -4(а-2х)
10) 1 группа -12х и -11х, вторая - 15а и -18а. ответ: -23х-3а
11) 31х и -25х, вторая - -14а и 18а. ответ: 2(3х+2а)
12) 1 группа -3а и -3а, вторая - 15, -12 и 11. ответ: -2(3а-7)
13) 1 группа 12 и 17, вторая - -6а и 6а. ответ: 29
14) 1 группа -а и 5а, вторая - -х и -3х. ответ: 4(а-х)
15) 1 группа -а и 5а, вторая - -х и -3х. ответ: 4(а-х)
16) 1 группа 16 и -15, вторая - 12а, 13а и -2а. ответ: 1-а
Даны вершины треугольника АВС: А ( 1;6) В (-6;-4) С (-10;-1).
1) уравнение стороны АВ. Вектор АВ = (-6-1; -4-6) = (-7; -10).
Уравнение: (x - 1)/(-7) = (y - 6)/(-10) или 10x - 7y + 32 = 0 в общем виде.
2) уравнение высоты СН.
У перпендикуляра к прямой в виде Ax + By + C = 0 коэффициенты А и В меняются на -В и А.
СН это перпендикуляр к стороне АВ.
Уравнение СН: 7x + 10y + С = 0. Для определения слагаемого С подставим координаты точки С(-10; -1).
7*(-10) + 10*(-1) + С = 0, отсюда С = 70 + 10 = 80.
Получаем 7x + 10y + 80 = 0
3) уравнение медианы АМ.
Находим координаты точки М как середины стороны ВС.
М = (В (-6;-4) + С (-10;-1))/2 = (-8; -2,5). Точка А ( 1; 6).
Вектор АМ = (-8-1; -2,5-6) = (-9; -8,5).
Уравнение АМ: (x - 1)/(-9) = (y - 6)/(-8.5).
Или в общем виде 17x - 18y + 91 = 0.
4) точку N пересечения медианы АМ и высоты СН
.Решаем как решение системы уравнений этих прямых:
{17x - 18y + 91 = 0| x7 = 119x - 126y + 637 = 0.
{7x + 10y + 80 = 0| x(-17) = -119x - 170y - 1360 = 0.
-296y - 723 = 0,
y = -723/296 ≈ -2,442568, x = (-80 -10*-2,442568)/7 ≈ -7,93919.
5)уравнение прямой проходящей через вершину С параллельно стороне АВ.
С || АВ: 10 x - 7 y + 93 = 0.
Коэффициенты А и В сохраняются, для определения слагаемого С подставляются координаты точки С.
6) расстояние от точки С до прямой АВ
CC₂ = 2S/АВ = 4,9973147.
Площадь треугольника ABC
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 30,5.
Расчет длин сторон:
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √149 ≈ 12,2066.
1) подобные оба числа. ответ: -3х
2) подобные оба числа. ответ: -7х
3) подобные оба числа. ответ: -6х
4) подобные все числа. ответ: -6а
5) подобные все числа. ответ: -2а
6) подобные все числа. ответ: -7а
7) подобные 5х и 6х. ответ: 2а+х
8) 1 группа подобных -4а и -3а, вторая - -5х и 7х. ответ: -7а+12х
9) 1 группа 6а, -9а и -а, вторая - -7х и 15х. ответ: -4(а-2х)
10) 1 группа -12х и -11х, вторая - 15а и -18а. ответ: -23х-3а
11) 31х и -25х, вторая - -14а и 18а. ответ: 2(3х+2а)
12) 1 группа -3а и -3а, вторая - 15, -12 и 11. ответ: -2(3а-7)
13) 1 группа 12 и 17, вторая - -6а и 6а. ответ: 29
14) 1 группа -а и 5а, вторая - -х и -3х. ответ: 4(а-х)
15) 1 группа -а и 5а, вторая - -х и -3х. ответ: 4(а-х)
16) 1 группа 16 и -15, вторая - 12а, 13а и -2а. ответ: 1-а
Даны вершины треугольника АВС: А ( 1;6) В (-6;-4) С (-10;-1).
1) уравнение стороны АВ. Вектор АВ = (-6-1; -4-6) = (-7; -10).
Уравнение: (x - 1)/(-7) = (y - 6)/(-10) или 10x - 7y + 32 = 0 в общем виде.
2) уравнение высоты СН.
У перпендикуляра к прямой в виде Ax + By + C = 0 коэффициенты А и В меняются на -В и А.
СН это перпендикуляр к стороне АВ.
Уравнение СН: 7x + 10y + С = 0. Для определения слагаемого С подставим координаты точки С(-10; -1).
7*(-10) + 10*(-1) + С = 0, отсюда С = 70 + 10 = 80.
Получаем 7x + 10y + 80 = 0
3) уравнение медианы АМ.
Находим координаты точки М как середины стороны ВС.
М = (В (-6;-4) + С (-10;-1))/2 = (-8; -2,5). Точка А ( 1; 6).
Вектор АМ = (-8-1; -2,5-6) = (-9; -8,5).
Уравнение АМ: (x - 1)/(-9) = (y - 6)/(-8.5).
Или в общем виде 17x - 18y + 91 = 0.
4) точку N пересечения медианы АМ и высоты СН
.Решаем как решение системы уравнений этих прямых:
{17x - 18y + 91 = 0| x7 = 119x - 126y + 637 = 0.
{7x + 10y + 80 = 0| x(-17) = -119x - 170y - 1360 = 0.
-296y - 723 = 0,
y = -723/296 ≈ -2,442568, x = (-80 -10*-2,442568)/7 ≈ -7,93919.
5)уравнение прямой проходящей через вершину С параллельно стороне АВ.
С || АВ: 10 x - 7 y + 93 = 0.
Коэффициенты А и В сохраняются, для определения слагаемого С подставляются координаты точки С.
6) расстояние от точки С до прямой АВ
CC₂ = 2S/АВ = 4,9973147.
Площадь треугольника ABC
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 30,5.
Расчет длин сторон:
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √149 ≈ 12,2066.