Особенно мне понравилось стихотворение Сергея Есенина “Стансы”. В нем поэт рассуждает о назначении поэта и поэзии. Он пишет:Стишок писнутъ всякий может —О девушке, о звездах, о луне...Но его мысли устремлены совсем в иную сторону. Есенин восхваляет сделанное руками человеческими: нефтяные вышки, фонари. Он горд, что пишет об этом. Сергей Есенин видит прямое назначение поэта. Он ставит себя выше тех писателей, которые пишут хвалебные стихи:Я вам не кенар!Я поэт!И не чета каким-то там Демьянам,Пускай бываю иногда я пьяным,Зато в глазах моихПрозрений дивных свет.Он не променял бы судьбу писателей на свою судьбу, хотя она нелегка:... Но очень жестокоСпать там на скамейкеИ пьяным голосом читать какой-то стихО клеточной судьбе Несчастной канарейки.В этом стихотворении Сергей Есенин пишет о Ленине, о Марксе. Он уважает их, как великих, а не как коммунистов. Он восхваляет все великое, созданное руками человека.Есенин считает себя настоящим поэтом, и в этом с ним можно согласиться.
Число А имеет 3 делителя, значит это квадрат числа а. И делители: 1, а, а^2.
(а^2=a*a- это а в квадрате)
Число В имеет 5 делителей, значит это 4-я степень числа b. И делители : 1, b, b^2, b^3, b^4. (Или делители: 1, b, b*b, b*b*b, b*b*b*b).
Так как в делителях В есть квадрат, то a не равно b. Иначе a^2 будет в делителях В и В будет делаться на А.
Значит делители А и В не совпадают.
Поэтому их произведение будет иметь 3*5=15 делителей. (Все возможные произведения делителей: надо каждое из 5 делителей В умножить на каждый делитель А).
Пошаговое объяснение:
Почему числа с 3 и 5 делителями являются степенями:
Если число простое оно имеет 2 делителя.
Если число представлено в виде произведения двух чисел a*b, то оно имеет 4 делителя:
1, a, b, a*b.
Чтобы получить 3 делителя надо приравнять a и b. И получится квадрат: 1, a, a*a
Аналогично с 5.
Если число является произведением квадрата на число: a*a*c, то делителей будет 6: 1, a, c, a*a, a*c, a*a*c.
Число А имеет 3 делителя, значит это квадрат числа а. И делители: 1, а, а^2.
(а^2=a*a- это а в квадрате)
Число В имеет 5 делителей, значит это 4-я степень числа b. И делители : 1, b, b^2, b^3, b^4. (Или делители: 1, b, b*b, b*b*b, b*b*b*b).
Так как в делителях В есть квадрат, то a не равно b. Иначе a^2 будет в делителях В и В будет делаться на А.
Значит делители А и В не совпадают.
Поэтому их произведение будет иметь 3*5=15 делителей. (Все возможные произведения делителей: надо каждое из 5 делителей В умножить на каждый делитель А).
Пошаговое объяснение:
Почему числа с 3 и 5 делителями являются степенями:
Если число простое оно имеет 2 делителя.
Если число представлено в виде произведения двух чисел a*b, то оно имеет 4 делителя:
1, a, b, a*b.
Чтобы получить 3 делителя надо приравнять a и b. И получится квадрат: 1, a, a*a
Аналогично с 5.
Если число является произведением квадрата на число: a*a*c, то делителей будет 6: 1, a, c, a*a, a*c, a*a*c.
Если а=с, то 5.