Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях определены такие тождества: 1) ab + 3c = 6) 3c + ab ( перестановка слагаемых); 2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок); 3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя); 4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
1) 1/15 и 1/5 * 3 = 3/15; 1/15 & 3/15
2) 2/3 * 4 = 8/12 и 3/4 * 3 = 9/12; 8/12 & 9/12 ( знаменатели взаимно-простые, поэтому просто перемножили )
3) 1/2 * 7 = 7/14 и 3/7 * 2 = 6/14; 7/14 & 6/14 ( знаменатели взаимно-простые, поэтому просто перемножили )
4) 3/5 * 6 = 18/30 и 5/6 * 5 = 25/30; 18/30 & 25/30 ( знаменатели взаимно-простые, поэтому просто перемножили )
5) 4/15 * 11 = 44/165 и 7/11 * 15 = 105/165; 44/165 & 105/165 ( эти знаменатели тоже взаимно-простые, поэтому просто перемножили )
Пошаговое объяснение:
Я смог
1) ab + 3c = 6) 3c + ab ( перестановка слагаемых);
2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок);
3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя);
4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).