Имеем неопределённость оо - оо (бесконечность минус бесконечность). Умножим и разделим исходное выражение на sqrt(x^2+1)+sqrt(x^2-1). Получим такое выражение: [sqrt(x^2+1) - sqrt(x^2-1)]*[sqrt(x^2+1) + sqrt(x^2-1)]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе имеем разложение разности квадратов на множители, знаменатель так и оставляем: [(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе производим упрощения: (sqrt(x^2+1))^2 - (sqrt(x^2-1))^2= x^2 + 1 -x^2 +1 = 2 Знаменатель вновь без изменений. После этого исходное выражение выглядит так: 2/(sqrt(x^2+1) + sqrt(x^2-1)) Вот теперь можно вместо икса подставлять бесконечность. В знаменателе получится оо + оо = оо. Сумма бесконечностей равна бесконечности. А вот разница может оказаться любой. Наконец, нам осталось разделить 2 на оо, а это будет нуль. ответ: lim = 0
Умножим и разделим исходное выражение на sqrt(x^2+1)+sqrt(x^2-1).
Получим такое выражение:
[sqrt(x^2+1) - sqrt(x^2-1)]*[sqrt(x^2+1) + sqrt(x^2-1)]/[sqrt(x^2+1) + sqrt(x^2-1)]
В числителе имеем разложение разности квадратов на множители, знаменатель так и оставляем:
[(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2]/[sqrt(x^2+1) + sqrt(x^2-1)]
В числителе производим упрощения:
(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2= x^2 + 1 -x^2 +1 = 2
Знаменатель вновь без изменений. После этого исходное выражение выглядит так:
2/(sqrt(x^2+1) + sqrt(x^2-1))
Вот теперь можно вместо икса подставлять бесконечность. В знаменателе получится оо + оо = оо. Сумма бесконечностей равна бесконечности. А вот разница может оказаться любой.
Наконец, нам осталось разделить 2 на оо, а это будет нуль.
ответ: lim = 0
В задаче не сказано какой формы будут клумбы - вот и задумался садовник. Рисунок к задаче в приложении.
Если стороны равны - а , то это ромб или квадрат. Тогда периметр по формуле: Р = 4*а.
Если стороны разные: a и b, то это параллелограмм или прямоугольник и периметр по формуле: P = 2*(a + b).
1) а = b = 4 м. Р1 = 4*а = 4*4 = 16 м - периметр первой клумбы.
2) Р2 = 2*(6 + 4) = 2*10 = 20 м - периметр второй клумбы
3) Р3 = 2*(7 + 2) = 2*9 = 18 м - периметр третьей клумбы.
4) Р4 = 2*(5 + 3) = 2*8 = 16 м - периметр четвёртой клумбы.
И теперь длину изгороди на все четыре клумбы - сумма отдельных.
5) Р = 16+20+18+16 = 70 м на все четыре клумбы - ОТВЕТ