Пошаговое объяснЗадание А),
1) 18 + 12 = 30 учеников - всего
2) 360° : 30 = 12° - 1 уч.
3) 12 * 18 = 216° - девочки
4) 12 * 12 = 144° - мальчики.
Задание Б).
1) 120 + 60 = 180 г - весь сплав
2) 360° : 18- = 2° - 1 г сплава
3) 2 * 120 = 240° - олово
4) 2 * 60 = 120° - свинец
Задание В).
1) 100 + 70 + 10 = 180 г - весь сплав
2) 360° : 180 = 2° - 1 г сплава
3) 2 * 100 = 200° - олово
4) 2 * 70 = 140° - свинец
5) 2 * 10 = 20° - примеси.
Задание Г),
1) 360° : 480 = 0,75° - 1 квартира
2) 480 - (48 + 240) = 192 квартиры - 3х комнатные
3) 0,75 * 48 = 36° - 1-комн. квартиры
4) 0,75 * 240 = 180° - 2х комн. квартиры
5) 0,75 * 192 = 144° - 3х комнатные.ение:
Построим правильную треугольную призму АВСА1В1С1 и проведем диагональ боковой грани А1В.
Правильная треугольная призма — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям.
Формула площади боковой поверхности призмы S=p*h, где р - периметр основания, h – высота
р=3*3=9 см (так как призма правильная)
Найдем высоту данной призмы АА1:
Рассмотрим треугольник АВА1:
Угол ВАА1 – прямой (так как призма правильная),
АВ=3 см – катет данного треугольника
ВА1=5 см – гипотенуза данного треугольника
По теореме Пифагора найдем второй катет:
АА1=√(ВА1^2 – AB^2)=√(5^2-3^2)=√(25-9)=√16=4 см
Боковая площадь данной призмы равна
S=p*h=9*4=36 кв. см.
Пошаговое объяснЗадание А),
1) 18 + 12 = 30 учеников - всего
2) 360° : 30 = 12° - 1 уч.
3) 12 * 18 = 216° - девочки
4) 12 * 12 = 144° - мальчики.
Задание Б).
1) 120 + 60 = 180 г - весь сплав
2) 360° : 18- = 2° - 1 г сплава
3) 2 * 120 = 240° - олово
4) 2 * 60 = 120° - свинец
Задание В).
1) 100 + 70 + 10 = 180 г - весь сплав
2) 360° : 180 = 2° - 1 г сплава
3) 2 * 100 = 200° - олово
4) 2 * 70 = 140° - свинец
5) 2 * 10 = 20° - примеси.
Задание Г),
1) 360° : 480 = 0,75° - 1 квартира
2) 480 - (48 + 240) = 192 квартиры - 3х комнатные
3) 0,75 * 48 = 36° - 1-комн. квартиры
4) 0,75 * 240 = 180° - 2х комн. квартиры
5) 0,75 * 192 = 144° - 3х комнатные.ение:
Построим правильную треугольную призму АВСА1В1С1 и проведем диагональ боковой грани А1В.
Правильная треугольная призма — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям.
Формула площади боковой поверхности призмы S=p*h, где р - периметр основания, h – высота
р=3*3=9 см (так как призма правильная)
Найдем высоту данной призмы АА1:
Рассмотрим треугольник АВА1:
Угол ВАА1 – прямой (так как призма правильная),
АВ=3 см – катет данного треугольника
ВА1=5 см – гипотенуза данного треугольника
По теореме Пифагора найдем второй катет:
АА1=√(ВА1^2 – AB^2)=√(5^2-3^2)=√(25-9)=√16=4 см
Боковая площадь данной призмы равна
S=p*h=9*4=36 кв. см.