дано: y1 = 4 - x², y2 = x² - 2x
найти площадь фигуры.
пошаговое объяснение:
площадь - интеграл разности функций.
рисунок к в приложении.
график функции у1 - выше, чем у функции у2.
находим точки пересечения - решаем квадратное уравнение разности функций.
-x² + 4 = x² - 2x
-2x² + 2x + 4 = 0
a = 2 - верхний предел, b = - 1 - нижний предел.
находим интеграл разности функций - пишем в обратном порядке.
вычисляем
s(2)= 8 + 4 - 5.33 = 6.67
s(-1) = --4 +1 - 0.67 = - 2.33
s = s(2) - s(-1) = 6.67 - (-2.33) = 9 - площадь - ответ.
1) из большего модуля слагаемых вычесть меньший;
2) поставить перед полученным числом знак того слагаемого,
модуль которого больше.
Например:
7 > 4
4 + ( – 7) = – ( 7 – 4 ) = – 3 ;
13 > 7
13 + ( – 7) = + ( 13 – 7 ) = 6 ;
13 > 14
– 13 + 14 = – ( 13 – 14) = – ( 412 – 312) = – 112 .
дано: y1 = 4 - x², y2 = x² - 2x
найти площадь фигуры.
пошаговое объяснение:
площадь - интеграл разности функций.
рисунок к в приложении.
график функции у1 - выше, чем у функции у2.
находим точки пересечения - решаем квадратное уравнение разности функций.
-x² + 4 = x² - 2x
-2x² + 2x + 4 = 0
a = 2 - верхний предел, b = - 1 - нижний предел.
находим интеграл разности функций - пишем в обратном порядке.
вычисляем
s(2)= 8 + 4 - 5.33 = 6.67
s(-1) = --4 +1 - 0.67 = - 2.33
s = s(2) - s(-1) = 6.67 - (-2.33) = 9 - площадь - ответ.