1. Уравнение вида равносильно системе
2. Решим уравнение
2.1. Поскольку то
2.2. Используя свойство степеней имеем:
2.3. Сделаем замену: Тогда:
2.4. Преобразуем уравнение:
2.5. По теореме, обратной теореме Виета, имеем:
2.6. Делаем обратную замену:
2.7. Первое уравнение не имеет корней, поскольку правая часть не может быть отрицательной. Решим уравнение
3. Определим ограничения:
3.1. Ограничение для данного уравнения соответствует неравенству:
3.2. Раскроем скобки, приведем подобные слагаемые:
3.3. Умножим обе части неравенства на
3.4. Решением данного неравенства является промежуток
4. Отберем корни уравнения, принадлежащие промежутку
Пусть тогда
5. Решением данного уравнения является
6. В ответ следует записать сумму корней (или корень, если он единственный), деленную на
ответ:
ответ: Вірний варіант тільки А ) .
Пошаговое объяснение:
Варіант А ) підходить , а варіанти В ) , С ) і D ) не дають правильну відповідь . Дійсно , можемо переконатися :
g(x) = lg[( 1 + x )/( 1 - x )] ;
A ) g(x₁) + g(x₂) = lg[( 1 + x₁ )/( 1 - x₁ )] + lg[( 1 + x₂ )/( 1 - x₂ )] =
= lg[( 1 + x₁ )( 1 + x₂ )/( 1 - x₁ )( 1 - x₂ ) ; тепер обчислимо праву частину :
g( ( x₁ + x₂)/( 1 + x₁x₂) ) = lg[ ( 1 + ( x₁ + x₂)/( 1 + x₁x₂))/( 1 - ( x₁ + x₂)/( 1 + x₁x₂)) ] =
= lg[ ( 1 + x₁ + x₂+ x₁x₂)/( 1 - x₁ - x₂+ x₁x₂) ] = lg[( 1 + x₁ )( 1 + x₂ )/( 1 - x₁ )( 1 - x₂ ) .
Отже , варіант А ) правильна рівність .
Для простоти решту варіантів ( В , С , D ) значно легше перевірити
для конкретних числових значень х . Рівності невірні .
1. Уравнение вида равносильно системе
2. Решим уравнение
2.1. Поскольку то
2.2. Используя свойство степеней имеем:
2.3. Сделаем замену: Тогда:
2.4. Преобразуем уравнение:
2.5. По теореме, обратной теореме Виета, имеем:
2.6. Делаем обратную замену:
2.7. Первое уравнение не имеет корней, поскольку правая часть не может быть отрицательной. Решим уравнение
3. Определим ограничения:
3.1. Ограничение для данного уравнения соответствует неравенству:
3.2. Раскроем скобки, приведем подобные слагаемые:
3.3. Умножим обе части неравенства на
3.4. Решением данного неравенства является промежуток
4. Отберем корни уравнения, принадлежащие промежутку
Пусть тогда
Пусть тогда
Пусть тогда
5. Решением данного уравнения является
6. В ответ следует записать сумму корней (или корень, если он единственный), деленную на
ответ:
ответ: Вірний варіант тільки А ) .
Пошаговое объяснение:
Варіант А ) підходить , а варіанти В ) , С ) і D ) не дають правильну відповідь . Дійсно , можемо переконатися :
g(x) = lg[( 1 + x )/( 1 - x )] ;
A ) g(x₁) + g(x₂) = lg[( 1 + x₁ )/( 1 - x₁ )] + lg[( 1 + x₂ )/( 1 - x₂ )] =
= lg[( 1 + x₁ )( 1 + x₂ )/( 1 - x₁ )( 1 - x₂ ) ; тепер обчислимо праву частину :
g( ( x₁ + x₂)/( 1 + x₁x₂) ) = lg[ ( 1 + ( x₁ + x₂)/( 1 + x₁x₂))/( 1 - ( x₁ + x₂)/( 1 + x₁x₂)) ] =
= lg[ ( 1 + x₁ + x₂+ x₁x₂)/( 1 - x₁ - x₂+ x₁x₂) ] = lg[( 1 + x₁ )( 1 + x₂ )/( 1 - x₁ )( 1 - x₂ ) .
Отже , варіант А ) правильна рівність .
Для простоти решту варіантів ( В , С , D ) значно легше перевірити
для конкретних числових значень х . Рівності невірні .