В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
anastaswiip01dya
anastaswiip01dya
14.05.2023 18:14 •  Математика

Определи длину данных векторов, если известны их координаты. (Если это необходимо, ответ округли до десятых.)


Определи длину данных векторов, если известны их координаты. (Если это необходимо, ответ округли до

Показать ответ
Ответ:
Kristinapermya
Kristinapermya
01.09.2021 05:41

\dfrac{5^{1 +\sin^{2} x} - 5^{\cos^{2}x} - 24}{\sqrt{1 - (x^{2} + 3x + 3)}} =0

1. Уравнение вида \dfrac{f(x)}{g(x)} = 0 равносильно системе \displaystyle \left \{ {{f(x) = 0, \ \,} \atop g(x) \neq 0 \colon}} \right.

\displaystyle \left \{ {{5^{1 +\sin^{2} x} - 5^{\cos^{2}x} - 24 = 0, } \atop {\sqrt{1 - (x^{2} + 3x + 3)} \neq 0. \ \ \ \, } \right.

2. Решим уравнение 5^{1 +\sin^{2} x} - 5^{\cos^{2}x} - 24 = 0.

2.1. Поскольку \sin^{2}x = 1 - \cos^{2}x, то

5^{2 - \cos^{2} x} - 5^{\cos^{2}x} - 24 = 0.

2.2. Используя свойство степеней a^{x-y} = \dfrac{a^{x}}{a^{y}}, имеем:

\dfrac{5^{2}}{5^{\cos^{2} x}} - 5^{\cos^{2}x} - 24 = 0.

2.3. Сделаем замену: 5^{\cos^{2}x} = t. Тогда:

\dfrac{25}{t} - t - 24 = 0.

2.4. Преобразуем уравнение:

t^{2} + 24t - 25 = 0, ~~~ t \neq 0.

2.5. По теореме, обратной теореме Виета, имеем:

t_{1} = -25, ~ t_{2} = 1.

2.6. Делаем обратную замену:

\displaystyle \left [ {{5^{\cos^{2}x} = -25,} \atop {5^{\cos^{2}x} = 1. ~~~~}} \right.

2.7. Первое уравнение не имеет корней, поскольку правая часть не может быть отрицательной. Решим уравнение 5^{\cos^{2}x} = 1 \colon

5^{\cos^{2}x} = 5^{0};

\cos^{2}x = 0;

\cos x = 0;

x = \dfrac{\pi}{2} + \pi n, \ n \in Z.

3. Определим ограничения: \sqrt{1 - (x^{2} + 3x + 3)} \neq 0.

3.1. Ограничение для данного уравнения соответствует неравенству:

1 - (x^{2} + 3x + 3) 0.

3.2. Раскроем скобки, приведем подобные слагаемые:

-x^{2} - 3x -2 0.

3.3. Умножим обе части неравенства на (-1)\colon

x^{2} + 3x + 2 < 0.

3.4. Решением данного неравенства является промежуток (-2; ~ {-}1).

4. Отберем корни уравнения, принадлежащие промежутку (-2; ~ {-}1).

Пусть n = 0, тогда x = \dfrac{\pi}{2} \notin (-2; ~ {-}1)

Пусть n = -1, тогда x = \dfrac{\pi}{2} - \pi = -\dfrac{\pi}{2} \in (-2; ~ {-1}).

Пусть n = -2, тогда x = \dfrac{\pi}{2} - 2\pi = -\dfrac{3\pi}{2} \notin (-2; ~ {-1}).

5. Решением данного уравнения является x = -\dfrac{\pi}{2}.

6. В ответ следует записать сумму корней (или корень, если он единственный), деленную на \pi.

ответ: -0,5.

0,0(0 оценок)
Ответ:
androp4ik1
androp4ik1
17.09.2020 21:27

ответ:   Вірний варіант тільки А ) .

Пошаговое объяснение:

Варіант А ) підходить , а варіанти  В ) , С )  і  D ) не дають правильну відповідь . Дійсно , можемо переконатися :

g(x) = lg[( 1 + x )/( 1 - x )] ;

A ) g(x₁) + g(x₂) =  lg[( 1 + x₁ )/( 1 - x₁ )] + lg[( 1 + x₂ )/( 1 - x₂ )] =

= lg[( 1 + x₁ )( 1 + x₂ )/( 1 - x₁ )( 1 - x₂ ) ; тепер обчислимо праву частину :

g( ( x₁ + x₂)/( 1 + x₁x₂) ) = lg[ ( 1 + ( x₁ + x₂)/( 1 + x₁x₂))/( 1 - ( x₁ + x₂)/( 1 + x₁x₂)) ] =

= lg[ ( 1 + x₁ + x₂+ x₁x₂)/( 1 - x₁ - x₂+ x₁x₂) ] = lg[( 1 + x₁ )( 1 + x₂ )/( 1 - x₁ )( 1 - x₂ ) .

Отже , варіант А ) правильна рівність .

Для простоти решту варіантів  ( В , С , D ) значно легше перевірити

для конкретних числових значень  х . Рівності невірні .  

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота