а) На координатной оси имеется точка с координатой (1/6). 1/6 - единичный отрезок данной оси Стрелкой показано, что точка М отстоит от точки(1/6) на 3/6, т.е. на 3 единичных отрезка вправо, если смотреть по рисунку. Чтобы найти координаты точки М (относительно 0 данной оси) надо к точке 1/6 прибавить расстояние от нее. 1/6 + 3/6 = 4/6. Т.е. координата точки М(4/6) ответ: М(4/6) б) (·) N находится левее точки с координатой (5/6) на 3/6, т.е., чтобы найти координату, мы должны отнять от (5/6) три единичных отрезка данной координатной оси. 5/6 - 3/6 = 2/6 И на рисунке видно, что N отстоит от 0 оси на 2 единичных отрезка. Координаты точки N(2/6). ответ: N(2/6)
Решая уравнение (x+1)⁴=x+1, находим x1=-1 и x2=0 - нижний и верхний пределы интегрирования. Искомая площадь S=S1-S2, где S1=∫√(x+1)*dx, а S2=∫(x+1)²*dx. Находим первообразную для S1: F1(x)=∫(x+1)^(1/2)*d(x+1)=2/3*(x+1)^(3/2)+C1, где C1 - произвольная постоянная. Отсюда S1=F1(x2)-F1(x1)=2/3 кв. ед. Находим теперь первообразную для S2: F2(x)=∫(x+1)²*d(x+1)=1/3*(x+1)³+C2, где С2 - также произвольная постоянная. Отсюда S2=F2(x2)-F2(x1)=1/3 кв. ед. и тогда S=2/3-1/3=1/3.
1/6 - единичный отрезок данной оси
Стрелкой показано, что точка М отстоит от точки(1/6) на 3/6, т.е. на 3 единичных отрезка вправо, если смотреть по рисунку.
Чтобы найти координаты точки М (относительно 0 данной оси) надо к точке 1/6 прибавить расстояние от нее.
1/6 + 3/6 = 4/6.
Т.е. координата точки М(4/6)
ответ: М(4/6)
б) (·) N находится левее точки с координатой (5/6) на 3/6, т.е., чтобы найти координату, мы должны отнять от (5/6) три единичных отрезка данной координатной оси.
5/6 - 3/6 = 2/6
И на рисунке видно, что N отстоит от 0 оси на 2 единичных отрезка.
Координаты точки N(2/6).
ответ: N(2/6)
ответ: S=1/3 кв. ед.
Пошаговое объяснение:
Решая уравнение (x+1)⁴=x+1, находим x1=-1 и x2=0 - нижний и верхний пределы интегрирования. Искомая площадь S=S1-S2, где S1=∫√(x+1)*dx, а S2=∫(x+1)²*dx. Находим первообразную для S1: F1(x)=∫(x+1)^(1/2)*d(x+1)=2/3*(x+1)^(3/2)+C1, где C1 - произвольная постоянная. Отсюда S1=F1(x2)-F1(x1)=2/3 кв. ед. Находим теперь первообразную для S2: F2(x)=∫(x+1)²*d(x+1)=1/3*(x+1)³+C2, где С2 - также произвольная постоянная. Отсюда S2=F2(x2)-F2(x1)=1/3 кв. ед. и тогда S=2/3-1/3=1/3.