Определить показания амперметра,вольтметра, действующее напряжение на ur,катушке ul и на кондексатре uc,если u=141sin314t, l=38,22 мгн, c=354 мкф, r=15(ом), найти активную, реактивную и полную мощность цепи. записать мгновенное напряжение на , катушке и кондексаторе. постоить векторную диаграмму. электротехника
вот
Пошаговое объяснение: y'' + 10y' + 24y = 6e^(-6x) + 168x + 118
Неоднородное уравнение 2 порядка.
y(x) = y0 + y* (решение однородного + частное решение неоднородного).
Решаем однородное уравнение
y'' + 10y' + 24y = 0
Характеристическое уравнение
k^2 + 10k + 24 = 0
(k + 4)(k + 6) = 0
y0 = C1*e^(-4x) + C2*e^(-6x)
Находим частное решение неоднородного уравнения
-6 - один из корней характеристического уравнения, поэтому
y* = A*x*e^(-6x) + B1*x + B2
y* ' = A*e^(-6x) - 6Ax*e^(-6x) + B1
y* '' = -6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x)
Подставляем в уравнение
-6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x) + 10A*e^(-6x) - 60Ax*e^(-6x) + 10B1 + 24A*x*e^(-6x) + 24B1*x + 24B2 = 6e^(-6x) + 168x + 118
(-6A - 6A + 36A*x + 10A - 60A*x + 24A*x)*e^(-6x) + 24B1*x + (10B1 + 24B2) =
= 6e^(-6x) + 168x + 118
Приводим подобные в скобке при e^(-6x)
-12A + 10A + 60A*x - 60A*x = -2A
Подставляем
-2A*e^(-6x) + 24B1*x + (10B1 + 24B2) = 6e^(-6x) + 168x + 118
Коэффициенты при одинаковых множителях должны быть равны
{ -2A = 6
{ 24B1 = 168
{ 10B1 + 24B2 = 118
Решаем
{ A = -3
{ B1 = 7
{ 70 + 24B2 = 118; B2 = (118 - 70)/24 = 48/24 = 2
y* = -3x*e^(-6x) + 7x + 2
ответ: y = y0 + y* = C1*e^(-4x) + C2*e^(-6x) - 3x*e^(-6x) + 7x + 2
ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.