Определить тип линии, установить, какой геометрический образ она определяет; изобразить на чертеже оси первоначальной координатной системы, оси других координатных систем, которые вводятся по ходу решения, и геометрический образ, определяемый данным уравнением. 29x^2+16xy+16y^2-10x+5y=0
ответ:Дан дифференциальный закон распределения непрерывной случайной величины Х. Найти неизвестный параметр , интегральный закон распределения, математическое ожидание, дисперсию, среднее квадратичное отклонение. Построить графики дифференциальной и интегральной функций распределения.
x-apple-ql-id://F21E2C4C-9C96-4883-A1FD-8576C875E770/x-apple-ql-magic/D02BE31B-7F24-400D-B0CB-1490CFB179C4.png
Пошаговое объяснение:
Дан дифференциальный закон распределения непрерывной случайной величины Х. Найти неизвестный параметр , интегральный закон распределения, математическое ожидание, дисперсию, среднее квадратичное отклонение. Построить графики дифференциальной и интегральной функций распределения.
x-apple-ql-id://F21E2C4C-9C96-4883-A1FD-8576C875E770/x-apple-ql-magic/D02BE31B-7F24-400D-B0CB-1490CFB179C4.png
РЕШЕНИЕ
Рисунок к задаче в приложении.
а) По оси Х - t=2, S(2) = 8 км - через 2 часа - ОТВЕТ
б) Остановка - когда расстояние не изменяется. Находим и вычисляем время.
t2 = 7, t1 = 3
Время остановки - разность координат по оси Х - времени.
Т = 7 - 3 = 4 ч - остановка - ОТВЕТ.
в) Во км от дома.
Находим на оси S значение S= 4 км. Проводим горизонтальную линию параллельно оси времени. Оказалось две точки пересечения с графиком пути. Проводим вертикальные линии и находим время.
ОТВЕТ: Через 1 час - уходил и через 10 часов - возвращался.
Рисунок с решением задачи в приложении.
Подробнее - на -
Пошаговое объяснение: