Определить траекторию точки м, которая движется в плоскости так, что ее расстояние от точки p(1; -1) остается вдвое меньше расстояния до прямой x=4 . параллельным переносом осей координат полученное уравнение к каноническому виду и построить обе системы координат и найденную траекторию.
Пошаговое объяснение:
Можно свести требуемое условие до фот такой формулы: 1" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2By%5E%7B2%7D%20%3E%201" title="x^{2} +y^{2} > 1">, что при замене знака больше на равно даёт формулу окружности с центром в начале координат. А сама сумма квадратов даёт квадрат со стороной 2, ибо максимальная сумма 2, а минимальная - 0. Нужно найти отношение площади квадрата с вырезанным из него куском окружности к площади всего квадрата. Т.к. отрезок [0; 1], сторона r = 1, а площадь четверти круга следовательно . Площадь квадрата - 8. Вычитаем из площади квадрата полученную ранее и делим на площадь квадрата. Результат -