АБ*ВГ=ДДД, аД*ВГ-АБ=ВВ, АБ*Г=БД, Если АБ*ВГ = ДДД, а Д*ВГ-АБ = ВВ, то чему равно произведение АБ*Г?
ответ: Заметим, что ДДД = Д*111 = Д*3*37. Поскольку ни А, ни Б, не равны нулю (числа АБ и ВГ двузначные), а Д может принимать лишь целочисленные значения от 1 до 9, та равенство АБ*ВГ = ДДД возможно только в том случае, когда Д*3 - двузначное число, т.е. когда Д ≥ 4.
Для каждого значения Д = 4, 5, 6, 7, 8, 9 подсчитаем произведение Д*3. Получим соответственно 12, 15, 18, 21, 24, 27. Следовательно, только при Д = 8 произведение Д*3*37 может быть представлено в виде произведения двух двузначных сомножителей не единственным
Таким образом, либо ВГ = 37, а значение АБ вычисляется по формуле АБ = Д*3 для различных Д = 4, 5, 6, 7, 8, 9, либо ВГ = 74, Д = 8, АБ = 12, либо АБ = 37 и значение ВГ вычисляется для каждого допустимого Д по формуле ВГ=Д*3, либо АБ = 74, Д = 8, ВГ = 12.
Используя второе условие задачи Д*ВГ- АБ = ВВ, нетрудно убедиться, что единственно возможным случаем из всех указанных является АБ = 37, Д = 4 и ВГ = 12.
Теперь уже задачу легко решить: АБ*Г = 37*2 = 74 = БД.
Если АБ*ВГ = ДДД, а Д*ВГ-АБ = ВВ, то чему равно произведение АБ*Г?
ответ: Заметим, что ДДД = Д*111 = Д*3*37. Поскольку ни А, ни Б, не равны нулю (числа АБ и ВГ двузначные), а Д может принимать лишь целочисленные значения от 1 до 9, та равенство АБ*ВГ = ДДД возможно только в том случае, когда Д*3 - двузначное число, т.е. когда Д ≥ 4.
Для каждого значения Д = 4, 5, 6, 7, 8, 9 подсчитаем произведение Д*3. Получим соответственно 12, 15, 18, 21, 24, 27. Следовательно, только при Д = 8 произведение Д*3*37 может быть представлено в виде произведения двух двузначных сомножителей не единственным
Таким образом, либо ВГ = 37, а значение АБ вычисляется по формуле АБ = Д*3 для различных Д = 4, 5, 6, 7, 8, 9, либо ВГ = 74, Д = 8, АБ = 12, либо АБ = 37 и значение ВГ вычисляется для каждого допустимого Д по формуле ВГ=Д*3, либо АБ = 74, Д = 8, ВГ = 12.
Используя второе условие задачи Д*ВГ- АБ = ВВ, нетрудно убедиться, что единственно возможным случаем из всех указанных является АБ = 37, Д = 4 и ВГ = 12.
Теперь уже задачу легко решить: АБ*Г = 37*2 = 74 = БД.
а)3337+671+663 = (3337 + 663) + 671 = 4000 + 671 = 4671
б)(333+386) + (204+67) + 214 = (333 + 67) + (386+214) + 204 = 400 + 600 + 204 = 1000+204 = 1204
в) (742 + 856) + (134 + 144) +258 = (742 + 258) + (856+144) + 134 = 1000+1000+134=2134
г) (348 + 999) + 652 = (348+652) + 999 = 1000+999 = 1999
д)189 + 1257 + 211 = (189+211) + 1257 = 400 + 1257 = 1657
е)(306 + 391) + (209 + 74) + 326 = (391+209) + (74+326) + 306 = 600+400+306 = 1000+306 = 1306
ж)815 + (653 + 514) + (183 + 347) = 815 + 183 + (653+347) + 514 = 998 + 1000+514 = 1998 + 514 = 2512 (наверное ошибка надо 815 + (653 + 514) + (183 + 347) (или 817 или 185) тогда = (817+183) + (653+347) + 514 = 1000+1000+514=2514)
з) 754 + (888 + 246)= (754+246) + 888 = 1000+888 = 1888