Вообще-то эти углы не будут равны. Это же парабола. А она имеет ось симметрии, перпендикулярную оси абсцисс. Ну и так как угол между кривой и осью 0Х задаётся касательной к кривой в точке пересечения её с осью, то вспомним, что производная функции в точке равна тангенсу угла наклона касательной в этой точке. То есть угол наклона касательной определяется производной функции. производная равна y'=2ax+b. Точки пересечения оси абсцисс есть корни исходного квадратного уравнения x1=(-b+SQRT(b^2-4ac))/2a; x2=(-b-SQRT(b^2-4ac))/2a; подставим эти корни в производную и найдём тангенсы углов наклона касательных в этих точках: x1) 2a*(-b+SQRT(b^2-4ac))/2a+b=SQRT(b^2-4ac) x2) 2a*(-b-SQRT(b^2-4ac))/2a+b=-SQRT(b^2-4ac) сами углы будут равны q1=arctg(SQRT(b^2-4ac)) и q2=arctg(-SQRT(b^2-4ac)) Видно, что значение тангенса углов наклона различается только знаком. Так как тангенс нечётная функция, то tg(-x)=-tg(x), а значит и углы наклона касательной к данной функции в точках пересечения оси абсцисс будут различаться лишь знаком. то есть один угол будет q, а второй -q
Это же парабола. А она имеет ось симметрии, перпендикулярную оси абсцисс. Ну и так как угол между кривой и осью 0Х задаётся касательной к кривой в точке пересечения её с осью, то вспомним, что производная функции в точке равна тангенсу угла наклона касательной в этой точке. То есть угол наклона касательной определяется производной функции.
производная равна y'=2ax+b.
Точки пересечения оси абсцисс есть корни исходного квадратного уравнения
x1=(-b+SQRT(b^2-4ac))/2a; x2=(-b-SQRT(b^2-4ac))/2a;
подставим эти корни в производную и найдём тангенсы углов наклона касательных в этих точках: x1) 2a*(-b+SQRT(b^2-4ac))/2a+b=SQRT(b^2-4ac)
x2) 2a*(-b-SQRT(b^2-4ac))/2a+b=-SQRT(b^2-4ac)
сами углы будут равны q1=arctg(SQRT(b^2-4ac)) и q2=arctg(-SQRT(b^2-4ac))
Видно, что значение тангенса углов наклона различается только знаком. Так как тангенс нечётная функция, то tg(-x)=-tg(x), а значит и углы наклона касательной к данной функции в точках пересечения оси абсцисс будут различаться лишь знаком. то есть один угол будет q, а второй -q
Приравняем производную к нулю. 6x²+6x-12=0
Через дискриминант решаем квадратное уравнение.
D=18²=324
x=1 первый корень ур-ия.
x=-1,5 второй корень.
Теперь проверяем, принадлежат ли эти точки заданному промежутку. x=-1,5 не принадлежит. отбрасываем эту точку.
Теперь вычислим значение функции в оставшейся точке x=1 и на концах отрезка, то есть в точках x=-1 и x= 2.
y=2+3-12-1=-8
y=-2+3+12-1=12
y=16+12-24-1=3
получаем максимум в точке x=-1 (y=12)
минимум в точке x=1(y=-8)