Находим производную функции f(x)=2x²-x⁴+1. y ' = -4x³ + 4x = -4x(x² - 1). Приравниваем производную нулю: -4x(x² - 1) = 0. Отсюда получаем критические точки: х₁ = 0, x² - 1 = 0 x² = 1. х₂ = 1, х₃ = -1. На проміжку [-2;0] имеется 2 критические точки: х = -1 и х = 0. Исследуем значение производной вблизи этих точек. х = -1.5 -1 -0.5 0 0.5 y '=-4x³+4x 7.5 0 -1.5 0 1.5. В точке х = -1 переход от + к -, значит, это максимум, а в точке х = 0 переход от - к +, значит, это минимум.
y ' = -4x³ + 4x = -4x(x² - 1).
Приравниваем производную нулю:
-4x(x² - 1) = 0.
Отсюда получаем критические точки:
х₁ = 0,
x² - 1 = 0
x² = 1.
х₂ = 1,
х₃ = -1.
На проміжку [-2;0] имеется 2 критические точки:
х = -1 и х = 0.
Исследуем значение производной вблизи этих точек.
х = -1.5 -1 -0.5 0 0.5
y '=-4x³+4x 7.5 0 -1.5 0 1.5.
В точке х = -1 переход от + к -, значит, это максимум,
а в точке х = 0 переход от - к +, значит, это минимум.
a,b,c могут считаться базисом, если определитель из столбцов их координат не равен 0.
4 3 -1
det( 5 0 4) = -3*(5*2-4*2) - 1*(4*4-(-1)*5) = -27 - не равен 0, значит вектора
2 1 2
a,b,c образуют базис, что и требовалось показать.
Вектор d представим в виде:
d = p*a + q*b + r*c
Так как координаты d заданы, получим систему уравнений для коэффициентов p,q,r:
4p + 3q - r = 5
5p + 4r = 7
2p + q + 2r = 8
q = 8-2p-2r тогда получим систему 2p+7r=19
5p+4r=7
Решив, получим: p = -1, r = 3 и тогда q = 4
Значит разложение выглядит так:
d = -a + 4b + 3c