В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
49583
49583
05.08.2021 17:06 •  Математика

Определите координаты радиус вектора м​

Показать ответ
Ответ:
kirinjindosh12
kirinjindosh12
26.03.2020 03:54

По теореме о внешнем угле треугольника получим, что сумма двух углов треугольника, не смежных с внешним, будет равна 90 градусам, тогда по теореме о сумме углов треугольника третий внутренний угол будет равен 180 - 90 = 90 градусов, т.е. угол, смежный с внешним, будет прямой. Предположим, что второй внешний угол при другой вершине также прямой. Аналогично, смежный с внешним угол треугольника будет равен 90 градусам (прямой). Но треугольника с двумя прямыми углами не существует, следовательно утверждение неверно.

0,0(0 оценок)
Ответ:
gothalk2014
gothalk2014
08.06.2021 11:30

x^{2} + y^{2} = 8 — уравнение окружности с центром (0; \ 0) и радиусом \sqrt{8}.

y^{2} = 2x — уравнение параболы

Изобразим графики данных уравнений и найдем площадь образовавшейся фигуры в правой полуплоскости.

Выразим ординаты данных уравнений:

y = \pm\sqrt{8 - x^{2}} и y = \pm\sqrt{2x}

Так как имеем симметричные фигуры, найдем площадь S_{1} одной из них. Общая их площадь S будет состоять из площади двух S_{1}, то есть S = 2S_{1}

Тогда y =\sqrt{8 - x^{2}} и y = \sqrt{2x}. Поэтому \sqrt{8 - x^{2}} = \sqrt{2x}; \ 8 - x^{2} = 2x; \ x = 2 \geq 0

Так как окружность вытесняет больше площади, чем парабола, то имеем разность их площадей, определяющаяся через определенный интеграл:

S_{1} = \displaystyle \int\limits^{2}_{0} {\left(\sqrt{8 - x^{2}} - \sqrt{2x} \right)} \, dx = \int\limits^{2}_{0} {\sqrt{8 - x^{2}}} \, dx - \int\limits^{2}_{0} { \sqrt{2x} } \, dx

Найдем первый интеграл геометрически: площадь круга находится по формуле S = \pi R^{2}, где R — радиус круга. Тогда четверть круга: S' = \dfrac{S}{4} = \dfrac{\pi R^{2}}{4} = \dfrac{\pi \cdot 8}{4} = 2\pi

Найдем второй интеграл по формуле Ньютона-Лейбница:

\displaystyle \int\limits^{2}_{0} { \sqrt{2x} } \, dx = \dfrac{2\sqrt{2x^{3}}}{3} \bigg|_{0}^{2} = \dfrac{2\sqrt{2 \cdot 2^{3}}}{3} - \dfrac{2\sqrt{2 \cdot 0^{3}}}{3} = \dfrac{8}{3}

Таким образом, S_{1} = 2\pi - \dfrac{8}{3} кв. ед.

Тогда S = 2S_{1} = 4\pi - \dfrac{16}{3} кв. ед.

ответ: 4\pi - \dfrac{16}{3} кв. ед.


Найти площадь фигуры, лежащей в правой полуплоскости и ограниченной окружностью x^2+y^2=8 и параболо
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота