Определите логическую структуру данного высказывания и его значение истинности : «15 не делится на 4 и чётное» а) А∨В-ложь; б) ¯А ∨В-истина; в) ¯А∧В-истина; г) ¯А ∧В-ложь.
Аня и Боря любят играть в разноцветные кубики, причем у каждого из них свой набор и в каждом наборе все кубики различны по цвету. Однажды дети заинтересовались, сколько существуют цветов таких, что кубики каждого цвета присутствуют в обоих наборах. Для этого они занумеровали все цвета случайными числами от 0 до 108. На этом их энтузиазм иссяк, поэтому вам предлагается им в оставшейся части.
В первой строке входных данных записаны числа N и M — число кубиков у Ани и Бори. В следующих N строках заданы номера цветов кубиков Ани. В последних M строках номера цветов Бори.
Найдите три множества: номера цветов кубиков, которые есть в обоих наборах; номера цветов кубиков, которые есть только у Ани и номера цветов кубиков, которые есть только у Бори. Для каждого из множеств выведите сначала количество элементов в нем, а затем сами элементы, отсортированные по возрастанию.
160 | 2 120 | 2 100 | 2
80 | 2 60 | 2 50 | 2
40 | 2 30 | 2 25 | 5
20 | 2 15 | 3 5 | 5
10 | 2 5 | 5 1
5 | 5 1 100 = 2² · 5²
1 120 = 2³ · 3 · 5
160 = 2⁵ · 5
НОД = 2² · 5 = 20 - наибольший общий делитель
160 : 20 = 8 - яблоки
120 : 20 = 6 - апельсины
100 : 20 = 5 - груши
ответ: 20 подарков, в каждом из которых по 8 яблок, 6 апельсинов и 5 груш.
Аня и Боря любят играть в разноцветные кубики, причем у каждого из них свой набор и в каждом наборе все кубики различны по цвету. Однажды дети заинтересовались, сколько существуют цветов таких, что кубики каждого цвета присутствуют в обоих наборах. Для этого они занумеровали все цвета случайными числами от 0 до 108. На этом их энтузиазм иссяк, поэтому вам предлагается им в оставшейся части.
В первой строке входных данных записаны числа N и M — число кубиков у Ани и Бори. В следующих N строках заданы номера цветов кубиков Ани. В последних M строках номера цветов Бори.
Найдите три множества: номера цветов кубиков, которые есть в обоих наборах; номера цветов кубиков, которые есть только у Ани и номера цветов кубиков, которые есть только у Бори. Для каждого из множеств выведите сначала количество элементов в нем, а затем сами элементы, отсортированные по возрастанию.