В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Murew
Murew
03.04.2022 04:03 •  Математика

Определите тип угла образованного положительным направлением оси ох графиком функции f: r-r,f(x)=1/2x+2(одна вторая дробь)

Показать ответ
Ответ:
sashamakarova30
sashamakarova30
24.05.2023 15:48

Перепишем неравенство в таком виде

\sqrt{x-2a} 4-\sqrt{x+3}   (*)


Остановимся на этом шаге. Функция справа - убывающая, очевидно наступит момент, когда она обратится в нуль и в дальнейшем будет принимать лишь отрицательные значения. Функция слева может быть лишь положительна (или равна 0), т.е. можно найти такое значение параметра, при котором

все множество значений левой функции всегда будет больше множества значений правой функции. В этом случае решением неравенства будут являться все x из области определения.

Найдем при каком значении переменной правая функция обращается в нуль:

4-\sqrt{x+3} = 0

x = 13

В этой точке левая функция уже должна быть определена и должна принимать значения, строго большие нуля, т.е. \sqrt{13-2a} 0 => a \frac{13}{2}.

Итого при a \frac{13}{2} и x 2a исходное неравенство выполняется.

Следующий шаг, возведем обе части (*) в квадрат, чуть упростим, получим

8\sqrt{x+3} 19+2a   (#)

Проанализируем это неравенство. Если величина справа будет меньше нуля, то при любых допустимых x неравенство будет выполнено. Найдем момент, когда величина обращается в нуль:

19+2a = 0   =>

При значениях параметра меньших a = -19/2 все допустимые аргументы являются решениями. Очевидно, что из двух условий x-2a \ge 0 ; x+3 \ge 0 определеяющим будет

x+3 \ge 0

Итого при a < - \frac{19}{2} и x \ge -3 исходное неравенство выполняется.

Последний шаг, возведем (#) в квадрат и упростим, получится выражение

64x4a^2+76+169

Откуда x\frac{1}{64}(4a^2+76a+169) для всех оставшихся значений параметра a

a < - \frac{19}{2} , x \ge -3

- \frac{19}{2} \le a \le \frac{13}{2} , x\frac{1}{64}(4a^2+76a+169)

a \ \textgreater \ \frac{13}{2} , x \ge 2a

0,0(0 оценок)
Ответ:
LarisaSergeeva
LarisaSergeeva
02.01.2020 20:47
S_{n} = \frac{2a+(n-1)*d}{2}*n&#10;&#10;
Где a - первый член прогресии, n - количество членов, а d - разность прогрессии.
S_{100}= \frac{2*1+(100-1)*1}{2} *100 = 5050&#10;
---------------------------------
В процессе разбора решения, я придумал интересный может, конечно, не столь продуктивный, как обычная формула арифмитичечкой прогресии, но тоже весьма любопытный.
1+2...+100.
Что это вообще такое?
Мы можем разбить числа на пары, которые будут давать в сумме всегда 100, т.е.
1+99
2+98 и это будет продолжаться до тех пор, пока мы не подойдем к 50, последняя пара
49+51.
У нас останутся два числа 50 и 100 и 49 пар по 100
Несложно посчитать, что 49*100+50+100= 5050. 
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота