Обозначим: собственная скорость теплохода — v км/ч, а скорость течения реки — x км/ч». Тогда
a) v + x (км/ч) - скорость теплохода по течению реки
v - x (км/ч) - скорость теплохода против течения
b) 3*(v+x) (км) - расстояние, которое теплоход проплыл за 3 часа по течению реки
c) 3,9*(v-x) (км) - расстояние, которое теплоход проплыл за 3,9 ч против течения реки
d) расстояние, пройденное теплоходом по течению реки, и расстояние, пройденное теплоходом против течения реки, будут равными, т. е.
3*(v+x)=3,9*(v-x)
Пошаговое объяснение:
Пройденное расстояние равно скорости, умноженной на время:
s = v × t.
В нашем случае расстояние не меняется. Разными являются скорость теплохода (при движении по течению реки она больше) и затраченное время (при движении по течению реки оно меньше).
Обозначим: собственная скорость теплохода — v км/ч, а скорость течения реки — x км/ч». Тогда
a) v + x (км/ч) - скорость теплохода по течению реки
v - x (км/ч) - скорость теплохода против течения
b) 3*(v+x) (км) - расстояние, которое теплоход проплыл за 3 часа по течению реки
c) 3,9*(v-x) (км) - расстояние, которое теплоход проплыл за 3,9 ч против течения реки
d) расстояние, пройденное теплоходом по течению реки, и расстояние, пройденное теплоходом против течения реки, будут равными, т. е.
3*(v+x)=3,9*(v-x)
Пошаговое объяснение:
Пройденное расстояние равно скорости, умноженной на время:
s = v × t.
В нашем случае расстояние не меняется. Разными являются скорость теплохода (при движении по течению реки она больше) и затраченное время (при движении по течению реки оно меньше).
ну вот как то так
Пошаговое объяснение:
Из очень большой партии деталей извлечена случайная выборка объема 50; интересующий нас признак Х представлен следующим вариационным рядом: 22, 47, 26, 26, 30, 28, 28, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 40, 40, 40, 40, 40, 41, 41, 43, 44, 44, 45, 45, 47, 50. Найти статистический интервальный ряд распределения, построить гистограмму частот и относительных частот;
2) Выборка объема N = 100 представлена вариационным рядом
xi
ni
Требуется: 1. Построить полигон относительных частот; 2. Найти математическое ожидание и среднее квадратичное отклонение;
3) Дан следующий вариационный ряд X: 1, 1, 2, 2, 4, 4, 4, 5, 5, 5. Требуется: 1. Построить полигон распределения; 2. Вычислить дисперсию, моду, медиану; 3. Построить функцию распределения.