В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
КариM
КариM
11.11.2021 03:55 •  Математика

Основания равеобедренной трапеции равны 8 и 2, а боковые ребра равно 5. найдите расстояние между центрами вписанной т описанной окружностей

Показать ответ
Ответ:
znanijacom77
znanijacom77
20.09.2020 11:20
Положение центра вписанной окружности определим, узнав высоту трапеции.
H= \sqrt{5^2- (\frac{8-2}{2})^2} = \sqrt{25-9} = \sqrt{16}=4.
Тогда r = 4/2 = 2.
Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание.
Диагональ равна:
D= \sqrt{4^2+( \frac{8}{2} + \frac{2}{2})^2 } = \sqrt{16+25} = \sqrt{41}.
Радиус описанной окружности равен:
R= \frac{abc}{4S} .
Площадь треугольника равна:
S = (1/2)*8*4 = 16 кв.ед.
Тогда R= \frac{5*8* \sqrt{41} }{4*16} = \frac{5 \sqrt{41} }{8} =4,00195.
Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение:
H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 =  3.875.
Отсюда Δ =  3.875 - 4 = -0,125.
Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания.
ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота