Основою піраміди є прямокутник. Одне з бічних ребер піраміди перпендикулярне до площини основи, а найбільше бічне ребро дорівнює α і утворює зі сторонами основи , які перетинає, кути α і β. Знайдіть площу бічної поверхні піраміди.
1. Наименьшее общее кратное четырёх попарно различных чисел равно 165. Какое максимальное значение может принимать сумма этих чисел?
2. Учитель написал на доске дробь, у которой числитель и знаменатель — натуральные числа. Миша прибавил к числителю данной дроби 30 и записал полученную дробь к себе в тетрадь, а Лёша вычел из знаменателя дроби, записанной на доске, 6 и также записал полученную дробь к себе в тетрадь. Дроби, записанные мальчиками, оказались равны одному и тому же числу. Что это за число?
3. Дан вписанный четырёхугольник ABCD. Известно, что ∠ADB=42∘, ∠BDC=70∘. Внутри треугольника ABC отмечена точка X так, что ∠BCX=21∘, а луч AX является биссектрисой угла BAC. Найдите угол CBX. (картинка 1)
4. На доске нарисован график функции y=x2+ax+b. Юля нарисовала на том же чертеже две прямые, параллельные оси Ox. Первая прямая пересекает график в точках A и B, а вторая — в точках C и D. Найдите расстояние между прямыми, если известно, что AB=3, CD=11. (картинка 2)
5. На прямой отметили две красные точки и несколько синих. Оказалось, что одна из красных точек содержится ровно в 56 отрезках с синими концами, а другая — в 50 отрезках с синими концами. Сколько синих точек отмечено?
6. На координатной плоскости отмечены точки O(0;0), A(6;0), B(0;3). Прямая y=kx+b такова, что для любой точки M на этой прямой площадь AOBM равна 18. Чему равно k?
7. Юный энтомолог Дима наблюдает за двумя кузнечиками. Он заметил, что когда кузнечик начинает прыгать, он прыгает на 1 см, через секунду на 2 см, ещё через секунду на 3 см и т.д.
8. Сначала оба кузнечика сидели в одном месте. Один из них начал прыгать, а через несколько секунд вслед за первым начал прыгать второй (кузнечики прыгают по прямой в одном направлении). В какой-то момент Дима записал в тетрадку, что расстояние между кузнечиками равно 9 см. Несколько секунд спустя он записал, что расстояние между кузнечиками стало 57 см. Сколько секунд между записями? Укажите все возможные варианты.
Пошаговое объяснение:
№1
3•2=6 а если п до сотых то это 3,14~3,14 значит далее
6•3,14= 18,84
№2
9х=3,5•2
9х=7н
Х=7
—
9
Вот и все это пропорция!
№3
14:2=7 это радиус
3,14*7в квадрате=153,86(см в 2)
Ну а если округлить то 3,1*49=151,9
№4
1км равно 100000
30•100000 = 3000000см
Масштаб равен
3000000:3=1000000
И следовательно значит что ответ равен 1 к 1000000
№5
S=vt;t=S/v 3S=V/2*t значит t=3s/v2 =6S/v
ответ увеличится в 6раз
Можно сердечко если сможешь )
2Вариант
№1
П=3,14
Значит нужно 2•3,14•5=31,4(см)
Формула S=2Пr
№2
5,6:=5,3
56
— : Х = 5,3
10
3*56=10х•5 Это пропорция!
168=50х
168 18
— = 3 ——— или переводим в дробь 3,36
50 50
ответ 3,36
№3
Так сначала округлим 3,14 до десятых это 3,1
Далее по формуле 3,1•64:4=198,4(в квадрате ) -Sкруга
№4
Нужно 1000000:2 =500000
Значит ответ масштаб равен 1 : 500000
№5 (Я уже устал :) )
Х=S/2*1/3t=S/6t
ответ в 6раз уменьшится)
Ну вот)
ответ:это задания без ответов
1. Наименьшее общее кратное четырёх попарно различных чисел равно 165. Какое максимальное значение может принимать сумма этих чисел?
2. Учитель написал на доске дробь, у которой числитель и знаменатель — натуральные числа. Миша прибавил к числителю данной дроби 30 и записал полученную дробь к себе в тетрадь, а Лёша вычел из знаменателя дроби, записанной на доске, 6 и также записал полученную дробь к себе в тетрадь. Дроби, записанные мальчиками, оказались равны одному и тому же числу. Что это за число?
3. Дан вписанный четырёхугольник ABCD. Известно, что ∠ADB=42∘, ∠BDC=70∘. Внутри треугольника ABC отмечена точка X так, что ∠BCX=21∘, а луч AX является биссектрисой угла BAC. Найдите угол CBX. (картинка 1)
4. На доске нарисован график функции y=x2+ax+b. Юля нарисовала на том же чертеже две прямые, параллельные оси Ox. Первая прямая пересекает график в точках A и B, а вторая — в точках C и D. Найдите расстояние между прямыми, если известно, что AB=3, CD=11. (картинка 2)
5. На прямой отметили две красные точки и несколько синих. Оказалось, что одна из красных точек содержится ровно в 56 отрезках с синими концами, а другая — в 50 отрезках с синими концами. Сколько синих точек отмечено?
6. На координатной плоскости отмечены точки O(0;0), A(6;0), B(0;3). Прямая y=kx+b такова, что для любой точки M на этой прямой площадь AOBM равна 18. Чему равно k?
7. Юный энтомолог Дима наблюдает за двумя кузнечиками. Он заметил, что когда кузнечик начинает прыгать, он прыгает на 1 см, через секунду на 2 см, ещё через секунду на 3 см и т.д.
8. Сначала оба кузнечика сидели в одном месте. Один из них начал прыгать, а через несколько секунд вслед за первым начал прыгать второй (кузнечики прыгают по прямой в одном направлении). В какой-то момент Дима записал в тетрадку, что расстояние между кузнечиками равно 9 см. Несколько секунд спустя он записал, что расстояние между кузнечиками стало 57 см. Сколько секунд между записями? Укажите все возможные варианты.
Пошаговое объяснение: