От
Площини а і В перпендикулярні. Пряма а -лінія їхнього
перетину. У площині а вибрали точку А, ав площині В- точку в такі, що відстані від них до прямої а дорівню ють 4 см і 5 см відповідно. Знайдіть відстань між точка ми A i В, якщо відстань між їх проекціями на пряму а
дорівнює 22 см.
В тексте одно (ответ 3,1623), на бумаге - другое. (ответ4,899).
На бумаге, видимо, правильно.
Как бы вы ни решали, наука одна и та же, и элементы вычисления те же.
Но векторное исчисление может не использовать абсолютные координаты, и всё решается в относительных соотношениях, а если размеры объектов небольшие, мы не будем оперировать большими числами, которые могли бы возникнуть если центр координат сильно удален от объекта при расчете в абсолютных координатах.
Векторные вычисления по сути есть вычисления матричные. Векторное произведение векторов дает вектор, перпендикулярных обоим заданным векторам. Это позволяет чисто формально выполнить умножение, не задумываясь об их относительном расположении.
Я бы рекомендовала вначале хорошо усвоить все операции с матрицами 3х3 и 4х4, чтобы иметь надежный инструмент для вычислений, и запрограммировать это в программе Excel.
Потом разобраться какими (несколькими) видами уравнений можно задавать векторы, прямые и плоскости, и как это задается в матричном виде. Как можно векторными и матричными операциями решать задачи о перпендикулярах и пересечениях прямых, прямой и плоскости, двух плоскостей.
По сути плоскость задается обычными тремя точками или тремя точками на осях или двумя параллельными прямыми или векторами или пересекающимися прямыми. Все это можно сделать как на языке обычных систем уравнений, так и на языке матриц.
Рекомендую найти в интернете старинные учебники Мусхелишвили, где всё систематически и подробно излагается.
Сейчас, когда есть компьютеры, нет проблем за несколько секунд выполнить любую операцию, но интереснее всего поразмышлять над её смыслом, над тем, насколько это математически просто и красиво и в геометрическом и в матричном виде.
2.Х легкових машин
7Х вантажних машин
7Х - Х = 162
6Х = 162
Х = 27
ответ: 27 легкових машин в автопарку.
3.Для начала, составляем уравнение.
Нехай зошит коштує x копійок, тоді альбом - x+75.
7x+4(х+75)=795
7х+4х+300=795
11х=495
х=45
Виходить, що зошит коштує 45 копійок, а альбом - 120 копійок або 1 грн.20 коп.
4.Нехай швидкість теплохода х км/год, а катера - (х + 16 ) км/год, тоді
5х=3*(х + 16)
5х=3х + 48
5х-3х=48
2х=48
х=48 : 2
х= 24 (км/год) - швидкість теплохода
24 + 16 = 40 (км/год) - швидкість катера
Відповідь : 40 (км/год) - швидкість катера , 24 (км/год) - швидкість теплохода.