Пошаговое объяснение:
0,2/(х+4) = 0,6/(х-2)
0,2*(х-2) = 0,6(х+4)
0,2х - 0,2*2 = 0,6х + 0,6*4
0,2х - 0,4 = 0,6х + 2,4
0,2х - 0,6х = 2,4 + 0,4
-0,4х = 2,8
х = 2,8 : (-0,4) = - 28/4
х= - 7
0,2 / ( (-7) +4 ) = 0,6/( - 7 - 2)
0,2/ (-3) = 0,6/(-9)
- 2/30 = - 6/90
- 1/15 = - 1/15
если условие следует читать так:
(0,2/х) + 4 = (0,6/х ) - 2
(0,2 + 4х)/х = (0,6 - 2х)/х
х * (0,2 + 4х ) = х * (0,6 - 2х ) |:х
0,2 + 4х = 0,6 - 2х
4х + 2 х = 0,6 -0,2
6х = 0,4
х = 0,4 / 6 = 4/60 = 1/15
х = 1/15
(0,2 / (1/15) ) + 4 = (0,6 / (1/15) ) - 2
(2/10 ) * (15/1 ) + 4 = (6/10) * (15/1) - 2
3 + 4 = 9-2
7=7
Пошаговое объяснение:
0,2/(х+4) = 0,6/(х-2)
0,2*(х-2) = 0,6(х+4)
0,2х - 0,2*2 = 0,6х + 0,6*4
0,2х - 0,4 = 0,6х + 2,4
0,2х - 0,6х = 2,4 + 0,4
-0,4х = 2,8
х = 2,8 : (-0,4) = - 28/4
х= - 7
0,2 / ( (-7) +4 ) = 0,6/( - 7 - 2)
0,2/ (-3) = 0,6/(-9)
- 2/30 = - 6/90
- 1/15 = - 1/15
если условие следует читать так:
(0,2/х) + 4 = (0,6/х ) - 2
(0,2 + 4х)/х = (0,6 - 2х)/х
х * (0,2 + 4х ) = х * (0,6 - 2х ) |:х
0,2 + 4х = 0,6 - 2х
4х + 2 х = 0,6 -0,2
6х = 0,4
х = 0,4 / 6 = 4/60 = 1/15
х = 1/15
(0,2 / (1/15) ) + 4 = (0,6 / (1/15) ) - 2
(2/10 ) * (15/1 ) + 4 = (6/10) * (15/1) - 2
3 + 4 = 9-2
7=7
1/2 3
По определению логарифма:
(1/2)^-1=log (x-46)
3
2=log ( x-46)
3
По определению логарифма:
3²=x-46
x-46=9
x=9+46
x=55
Проверка:
log log (x-46)=-1
1/2 3
log log ( 55-46)=-1
1/2 3
log log 3²=-1
1/2 3
log 2 =-1
1/2
log 2=-1
2^-1
-1log 2=-1
2
-1=-1
ответ:55
2)
log (4-5x)+1=log 2+log( 7-33,5x)
9 9 9
log ( 4-5x)+log 9= log 2( 7-33,5x)
9 9 9
log 9(4-5x)=log 2(7-33,5x)
9 9
По свойству логарифма: "Основания логарифмов равны, тогда равны и выражения, стоящие под знаком логарифмов"
9(4-5х)=2(7-33,5х)
36-45х=14-67х
-45х+67х=14-36
22х=-22
х= -22:22
х=-1
Проверка:
log (4-5·(-1))+1=log 2+log (7-33,5·(-1))
9 9 9
log 9 +1= log 2 + log 40,5
9 9 9
1+1=log 40,5·2
9
log 81=2
9
9²=81
81=81
ответ: -1