Отрезок АВ не пересекает плоскость альфа точки А1 и В1 выбраны в плоскости альфа так что прямые АА1 и ВВ1 параллельны. Найдите длину отрезка соединяющего середины отрезков АВ и А1В1 , если АА1=5см , ВВ1=8см
Ключевым вопросом для определения военной опасности, существующих и прогнозируемых угроз для национальной и военной безопасности Российской Федерации является проблема формулирования национальных интересов государства. Современная система национальных интересов страны достаточно емко отражена в Концепции национальной безопасности. Под ними понимается совокупность сбалансированных интересов личности, общества и государства в экономической, внутриполитической, социальной, международной, информационной, военной, пограничной, экологической и других сферах. Интересы эти носят долго характер и определяют основные цели, стратегические и текущие задачи внутренней и внешней политики государства.
Решение обозначим через s(n) сумму цифр числа n. алгоритм. первым ходом вася называет 1. если число x оканчивается на k нулей, то s(x – 1) = 2011 + 9k. таким образом вася узнаёт положение самой правой ненулевой цифры в x. положим x1 = x – 10k. вася знает, что s(x1) = 2011. подобрав на втором ходу число a так, что x – a = x1 – 1, вася узнаёт сколько нулей в конце x1. пусть их m. положим x2 = x1 – 10m. тогда s(x2) = 2010. подобрав на третьем ходу число a так, что x – a = x2 – 1, вася узнаёт сколько нулей в конце x2, и т. д. после 2012 хода он получит s(x2012) = 0, тем самым найдя x. оценка. пусть петя признался, что в записи x есть только нули и единицы, то есть x = 10k2012 + 10k2011 + + 10k1, где k2012 > k2011 > > k1. при этом васи сводится к выяснению значений показателей ki. пусть васе не везёт, и на i-м ходу оказывается, что 10ki больше предъявленного васей числа a. тогда, независимо от значений k2012, ki+1, s(x – a) = s(10ki – a) + (2012 – i). тем самым, о значениях k2012, ki+1 ничего не известно (кроме того, что все они больше ki). в частности, после 2011 ходов может остаться неизвестным точное значение k2012.
обозначим через s(n) сумму цифр числа n.
алгоритм. первым ходом вася называет 1. если число x оканчивается на k нулей, то s(x – 1) = 2011 + 9k. таким образом вася узнаёт положение самой правой ненулевой цифры в x. положим x1 = x – 10k. вася знает, что s(x1) = 2011. подобрав на втором ходу число a так, что x – a = x1 – 1, вася узнаёт сколько нулей в конце x1. пусть их m. положим x2 = x1 – 10m. тогда s(x2) = 2010. подобрав на третьем ходу число a так, что
x – a = x2 – 1, вася узнаёт сколько нулей в конце x2, и т. д. после 2012 хода он получит s(x2012) = 0, тем самым найдя x.
оценка. пусть петя признался, что в записи x есть только нули и единицы, то есть x = 10k2012 + 10k2011 + + 10k1, где k2012 > k2011 > > k1. при этом васи сводится к выяснению значений показателей ki. пусть васе не везёт, и на i-м ходу оказывается, что 10ki больше предъявленного васей числа a. тогда, независимо от значений k2012, ki+1, s(x – a) = s(10ki – a) + (2012 – i). тем самым, о значениях k2012, ki+1 ничего не известно (кроме того, что все они больше ki). в частности, после 2011 ходов может остаться неизвестным точное значение k2012.
ответ
2012 ходов.