В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
BoGDAn4iK2015
BoGDAn4iK2015
20.06.2022 08:55 •  Математика

ответьте на 3 во Буду очень рад​

Показать ответ
Ответ:
semenkrut123
semenkrut123
16.03.2020 09:08
Привести квадратичную форму к каноническому виду методом Лагранжа
x² + 10xy + 2xz - z²

Решение
Метод Лагранжа - это просто метод выделения полных квадратов.
Собираем все слагаемые с переменной x

x² + 10xy + 2xz - z² = (x² + 10xy + 2xz) - z² =
= (x² + 2x*5y + 25y² - 25y² + 2xz + z² - z²) - z² =
= (x² + 2x*5y + 25y²  + 2xz + z² ) - 25y² - z² - z² =
= (x + 5y  + z)² - 25y² - 2z²
обозначаем : x' = x + 5y  + z; y' = y; z' =z
(где x = x' - 5y' - z'; y = y'; z = z')

x² + 10xy + 2xz - z² = (x + 5y  + z)² - 25y² - 2z² = x'² - 25y'² - 2z'²
Получили канонический вид.
0,0(0 оценок)
Ответ:
Finik2100
Finik2100
16.03.2020 09:08
Матрица, соответствующая данной квадратичной форме:
A=\begin{pmatrix}
 1 & -1 & 3 & -2 \\
 -1 & 1 & -2 & 3 \\
 3 & -2 & 1 & -1 \\
 -2 & 3 & -1 & 1 
\end{pmatrix}

Нужно найти собственные числа и собственные вектора этой матрицы. Собственные числа находим из уравнения det(A - λE) = 0:
\det (A-\lambda E)=\begin{vmatrix}1-\lambda & -1 & 3 & -2 \\ -1 & 1-\lambda & -2 & 3 \\ 3 & -2 & 1-\lambda & -1 \\ -2 & 3 & -1 & 1-\lambda\end{vmatrix}=\dots

Прибавим к первой строке все остальные строки, после вынесения общего множителя обнулим первый столбик во всех строках, кроме первой:
\dots=\begin{vmatrix}1-\lambda & 1-\lambda & 1-\lambda & 1-\lambda \\ -1 & 1-\lambda & -2 & 3 \\ 3 & -2 & 1-\lambda & -1 \\ -2 & 3 & -1 & 1-\lambda\end{vmatrix}=\\=(1-\lambda)\begin{vmatrix}1 & 1 & 1 & 1 \\ -1 & 1-\lambda & -2 & 3 \\ 3 & -2 & 1-\lambda & -1 \\ -2 & 3 & -1 & 1-\lambda\end{vmatrix}=\\=(1-\lambda)\begin{vmatrix}1 & 1 & 1 & 1 \\ 0 & 2-\lambda & -1 & 4 \\ 0 & -5 & -2-\lambda & -4 \\ 0 & 5 & 1 & 3-\lambda\end{vmatrix}=\dots

Раскладываем определитель по первому столбцу. Опустим пока множитель (1 - λ), сложим прибавим к третьей строчке вторую, вынесем общий множитель и обнулим третий столбец везде, кроме последней строки:
\dfrac{\dots}{(1-\lambda)}=\begin{vmatrix}2-\lambda & -1 & 4 \\ -5 & -2-\lambda & -4 \\ 5 & 1 & 3-\lambda\end{vmatrix}=\begin{vmatrix}2-\lambda & -1 & 4 \\ -5 & -2-\lambda & -4 \\ 0 & -1-\lambda & -1-\lambda\end{vmatrix}=\\=(-1-\lambda)\begin{vmatrix}2-\lambda & -1 & 4 \\ -5 & -2-\lambda & -4 \\ 0 & 1 & 1\end{vmatrix}=(-1-\lambda)\begin{vmatrix}2-\lambda & -5 & 0 \\ -5 & 2-\lambda & 0 \\ 0 & 1 & 1\end{vmatrix}=\dots

Раскладываем определитель по третьему столбцу, после отбрасывания множителей остается определитель матрицы 2x2, который равен 
(2-\lambda)^2-(-5)^2=(-3-\lambda)(7-\lambda)

Итак, 
\det (A-\lambda E)=(1-\lambda)(-1-\lambda)(-3-\lambda)(7-\lambda)=0\\
\lambda_{1,2,3,4}\in\{\pm 1,-3,7\}

Находим собственные векторы:
1) с.ч. = 1
Сумма всех строк равна 0, выкинем последнюю. Приведем матрицу к красивому виду (насколько сможем):
A-E=\begin{pmatrix} 0 & -1 & 3 & -2 \\ -1 & 0 & -2 & 3 \\ 3 & -2 & 0 & -1 \\ -2 & 3 & -1 & 0 \end{pmatrix}\sim \begin{pmatrix} 0 & -1 & 3 & -2 \\ -1 & 0 & -2 & 3 \\ 3 & -2 & 0 & -1 \end{pmatrix}\sim \\\sim \begin{pmatrix} 1 & 0 & 2 & -3 \\ 0 & -1 & 3 & -2 \\ 0 & -2 & -6 & 8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -3 \\ 0 & -1 & 3 & -2 \\ 0 & 1 & 3 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}

Из полученного вида матрицы получаем, что уравнению удовлетворяют все вектора вида (a, a, a, a); с.в. (1, 1, 1, 1)

2) c.ч. = -1
A+E=\begin{pmatrix} 2 & -1 & 3 & -2 \\ -1 & 2 & -2 & 3 \\ 3 & -2 & 2 & -1 \\ -2 & 3 & -1 & 2 \end{pmatrix}\sim \begin{pmatrix} 1&0&0&1\\0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}
с.в. (1, 1, -1, -1)

3) с.ч. = -3
A+3E=\begin{pmatrix} 4 & -1 & 3 & -2 \\ -1 & 4 & -2 & 3 \\ 3 & -2 & 4 & -1 \\ -2 & 3 & -1 & 4 \end{pmatrix}\sim \begin{pmatrix} 1&1&0&0\\0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}
с.в. (1, -1, -1, 1)

4) с.ч. = 7
A-7E=\begin{pmatrix} -6 & -1 & 3 & -2 \\ -1 & -6 & -2 & 3 \\ 3 & -2 & -6 & -1 \\ -2 & 3 & -1 & -6 \end{pmatrix}\sim \begin{pmatrix} 1&1&0&0\\0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}
c.в. (1, -1, 1, -1)

Собственные вектора уже ортогональны, но еще не отнормированы. Длина каждого равна 1/2, так что окончательно получаем, что под действием замены
\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}=\begin{pmatrix}\frac12&\frac12&\frac12&\frac12\\\frac12&\frac12&-\frac12&-\frac12\\\frac12&-\frac12&-\frac12&\frac12\\\frac12&-\frac12&\frac12&-\frac12\end{pmatrix}\begin{pmatrix}y_1\\y_2\\y_3\\y_4\end{pmatrix}
(по столбцам записаны собственные векторы) квадратичная форма примет вид
y_1^2-y_2^2-3y_3^2+7y_4^2
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота