ОЙЛАСТЫ ойынан бас
11 Есепті шығар.
Түсім мол болған жылы фермер 18 ц/га, ал түсім
аз болған жылы тек 8 ц/га бидай жинады. Егер би-
дайға 300 га жер бөлінген болса, ол осы жылдар-
дың әрқайсысында бидайдан қанша түсім алған?
Шарты: Мол болған жылы фермер 18 ц/га
Аз болған жылы 8 ц/га
Бидай 300 га
Шешуі: 300•18=5400
300•8=2400
Жауабы: Түсім мол болған жылы 5400 аз болған жылы—2400 алған.
Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).
Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).
Будем согнутый лист на любой стадии называть «фигурой».
Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):
1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);
2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)
3) [один] «однослойный остаток».
При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «угловых квадратиков», примыкающих к данной «краевой полосе». При этом важно понимать, что толщина никакой другой «краевой полосы» не увеличивается.
Когда после всех загибаний получилась «фигура» в виде конечного квадрата 6 на 6 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 5 на 5 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».
Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 5 сантиметрам.
Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 6 см, то значит, в совокупности, с каждой стороны было загнуто по 4 сантиметра листа. А именно: 4 сантиметра справа и 4 сантиметра сверху. Значит в «краевых полосах» сосредоточено 4 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 5 слоёв листа.
Площадь «краевой полосы» равна пяти квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 5 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 5*5*2 = 50 «ячеек».
Площадь «однослойного остатка», размером 5x5 см – равна 25 квадратным сантиметрам и содержит в себе 25 «ячеек».
Всего было 100 «ячеек». Из них 50 + 25 = 75 «ячеек» мы уже нашли. Остальные 25 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 25 слоёв исходного листа.
Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 25 дырок.
Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографиях. Первая – несогнутый квадратный лист 10x10 . Вторая – лист, согнутый до размеров 6x6. Третья – развёрнутый обратно лист с 25-тью дырками.
О т в е т : (Г) 25 дырок.
р а в н о с и л ь н о
"Не во всех столбцах есть белые клетки"
Значит в каких-то столбцах должны быть ТОЛЬКО чёрные клетки.
При этом, например, комбинация:
Ч Б Б
Ч Б Ч
Ч Б Б – удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждения (a), (б) и (г) – ложные.
Комбинация:
Ч Б Б
Ч Б Ч
Ч Ч Б – тоже удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждение (в) – ложное.
Поскольку не во всех столбцах есть белые клетки, то значит в каком-то столбце белых клеток – нет, стало быть всегда будет такой столбец, в котором нет белых клеток, т.е. ЧЁРНЫЙ стобец,
а поэтому, утверждение (д) – ВЕРНОЕ.
О т в е т : (д) есть столбец из черных клеток.