Параллельные прямые a и b пересечены двумя параллельными секущими ab и cd, причем точки a и с лежат на прямой a, а точки b и d – на прямой b. докажите, что ac=bd.
Четырехугольник, у которого противоположные стороны попарно параллельны (лежат на параллельных прямых) - параллелограмм. По условию АС и ВD, АВ и CD лежат на параллельных прямых. Следовательно, АВСD- параллелограмм. В параллелограмме противоположные стороны равны. ⇒ АС=ВD и АВ-СD.
Соединив А и D, получим треугольники АСD и ABD. В них накрестлежащие углы при пересечении параллельных прямых а и b секущей АD равны. Накрестлежащие углы при параллельных прямых АВ и CD секущей АD - равны. Сторона AD- общая. Треугольники АСD и ABD равны по второму признаку равенства треугольников. Их соответственные стороны равны. ⇒АВ=СD.
По условию АС и ВD, АВ и CD лежат на параллельных прямых. Следовательно, АВСD- параллелограмм.
В параллелограмме противоположные стороны равны. ⇒
АС=ВD и АВ-СD.
Соединив А и D, получим треугольники АСD и ABD.
В них накрестлежащие углы при пересечении параллельных прямых а и b секущей АD равны.
Накрестлежащие углы при параллельных прямых АВ и CD секущей АD - равны.
Сторона AD- общая.
Треугольники АСD и ABD равны по второму признаку равенства треугольников. Их соответственные стороны равны.
⇒АВ=СD.