У куба всего шесть граней. Значит, имеется три пары противоположных граней, где в каждой паре числа на гранях отличаются в 1,5 раза Пусть в первой паре это числа а и 1,5а, во второй паре в и 1,5в, в третье паре с и 1,5с Сумма чисел в вершинах равна сумме чисел на гранях. Приравняем эту сумму числу 2016. а + 1,5а + в + 1,5в + с + 1,5 с = 2016 а + в + с + 1,5а + 1,5в + 1,5с = 2016 а + в + с + 1,5(а + в + с) = 2016 (а + в + с)•(1 + 1,5) = 2016 (а + в + с) • 2,5 = 2016 а + в + с = 2016 : 2,5 а + в + с = 806,4 Этого не может быть, поскольку в вершинах записаны натуральные числа, следовательно их сумма на каждой из гранях также является натуральным числом, и, соответственной сумма чисел на любых гранях также должна быть натуральным числом и не может быть дробью. ответ: нет, не может.
Четырехугольник ABCD.
BE = CD = 5
(
с
м
2
)
;
1) AE * BE : 2 = 2 * 5 : 2 = 10 : 2 = 5
(
с
м
2
)
− площадь треугольника ABE;
2) ED * CD = 5 * 5 = 25
(
с
м
2
)
− площадь квадрата EBCD;
3) 5 + 25 = 30
(
с
м
2
)
− площадь четырехугольника ABCD.
ответ: 30
с
м
2
Треугольник KMNF.
1) KF * MF : 2 = 6 * 10 : 2 = 60 : 2 = 30
(
м
2
)
− площадь треугольника KMF;
2) MF * FN : 2 = 10 * 3 : 2 = 30 : 2 = 15
(
м
2
)
− площадь треугольника MFN;
3) 30 + 15 = 45
(
м
2
)
− площадь треугольника KMNF.
ответ: 45
м
2
Четырехугольник PTQR.
1) PX * TX : 2 = 5 * 8 : 2 = 40 : 2 = 20
(
д
м
2
)
− площадь треугольника PTX;
2) TX * XY = 8 * 7 = 56
(
д
м
2
)
− площадь прямоугольника TQXY;
3) QY = TX = 8 (дм);
QY * YR : 2 = 8 * 4 : 2 = 32 : 2 = 16
(
д
м
2
)
− площадь треугольника QYR;
4) 20 + 56 + 16 = 76 + 16 = 92
(
д
м
2
)
− площадь четырехугольника PTQR.
ответ: 92
д
м
2
Пошаговое объяснение:
Значит, имеется три пары противоположных граней, где в каждой паре числа на гранях
отличаются в 1,5 раза
Пусть в первой паре это числа а и 1,5а,
во второй паре в и 1,5в,
в третье паре с и 1,5с
Сумма чисел в вершинах равна сумме чисел на гранях. Приравняем эту сумму числу 2016.
а + 1,5а + в + 1,5в + с + 1,5 с = 2016
а + в + с + 1,5а + 1,5в + 1,5с = 2016
а + в + с + 1,5(а + в + с) = 2016
(а + в + с)•(1 + 1,5) = 2016
(а + в + с) • 2,5 = 2016
а + в + с = 2016 : 2,5
а + в + с = 806,4
Этого не может быть, поскольку в вершинах записаны натуральные числа, следовательно их сумма на каждой из гранях также является натуральным числом, и, соответственной сумма чисел на любых гранях также должна быть натуральным числом и не может быть дробью.
ответ: нет, не может.