Не факт ещё, что данное уравнение явлдяется квадратным, поскольку параметр содержится как раз при квадрате.1)a = 0 Тогда уравнение не является квадратным, получаем уравнение вида -5x -5 = 0Но линейное уравнение имеет лишь один корень. Значит, данное значение параметра нам не подходит.2)Рассмотрю случай, когда a ≠ 0. Тогда уравнение является квадратным. ax² - (a² + 5)x + 3a-5 = 0 Теперь вспомним, а когда квадратное уравнение имеет 2 различных корня? Тогда, когда его дискриминант больше 0. Так что, первым делом выделим дискриминант этого уравнения.a = a ; b = -(a²+5);c = 3a - 5; D = b² - 4ac = (-(a²+5))² - 4a(3a - 5) = a^4 + 10a² + 25 - 12a² + 20a = a^4 - 2a² + 20a + 25D > 0, как мы уже сказали. теперь решим неравенство.a^4 - 2a² + 20a + 25 > 0
ответ:
пошаговое объяснение:
1). iv - ; xii - 22; xix - 19; xxxiit - это не римская цифра (т-? ); xli - 41; xcv - 95; lxxvii - 77
2). 3 -iii; 7 - vii; 12 -xii; 14 - xiv; 25 - xxv; 37 - xxxvii; 42 - xlii; 53 - liii; 66 - lxvi; 89 - lxxxix; 105 - cv; 110 - cx; 151 - cli
200 - cc; 239 - ccxxxix; 318 - ; 402 - cdii; 515 - dxv; 1200 - mcc; 2563 - mmdlxiii; 3022 - mmmxx
3). xi + v = xvi
xx - ii = xliii
il tv - это не римская цифра (т-? );
cci + iii = cciv
xxxv 4 ix (арабскую цифру 4 переведем в римскую iv):
xxxv iv ix = mcclx
ci vii = dccvii