1-Как вычислить высоту конуса, зная образующую и радиус основания?
Образующая конуса, высота и радиус основания образуют прямоугольный треугольник.
Поэтому если известна образующая (гипотенуза) и радиус (катет), то высоту можно выразить с теоремы Пифагора.
a² = c² - b², a = √(c² - b²).
a - высота, b - радиус, c - образующая.
2- Ребро куба равно 3 см. Найти объем и площадь полной поверхности куба.
Прямоугольный параллелепипед, все грани которого - квадраты, называется кубом.
Все ребра куба равны, а площадь поверхности куба равна сумме площадей шести его граней, т.е. площади квадрата со стороной H умноженной на шесть.
Площадь поверхности куба равна: S = 6 · H², где (H - высота ребра куба).
S = 6 · 3² = 6 * 9 = 54 см².
Объем куба равен кубу его ребра: V=H³, где H - высота ребра куба.
V= 3³ = 27 см³.
3- Длина, ширина и высота прямоугольного параллелепипеда соответственно равны: 2см, 3см, 1см. Найти объем и площадь полной поверхности параллелепипеда.
Параллелепипедом называется призма, основание которой параллелограмм. Параллелепипед имеет шесть граней, и все они — параллелограммы.
Параллелепипед, четыре боковые грани которого — прямоугольники, называется прямым.
Прямой параллелепипед у которого все шесть граней прямоугольники, называется прямоугольным.
Площадь поверхности прямоугольного параллелепипеда равна удвоенной сумме площадей трех граней этого параллелепипеда:
S = 2 · (Sa + Sb + Sc) = 2 · (ab + bc + ac), где
a – длина, b – ширина, c – высота параллелепипеда.
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
V= SH= a·b·c, где
H - высота параллелепипеда, где a – длина, b – ширина, c – высота параллелепипеда.
V= 2 * 3 * 1 = 6 см³
4- Длина каждого ребра правильной треугольной пирамиды равна 8 см. Высота пирамиды равна 6 см. Найти площадь полной поверхности и объем пирамиды.
Правильная треугольная пирамида — это многогранник, у которого одна грань — основание пирамиды — правильный треугольник, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр основания из вершины.
У правильной треугольной пирамиды в основании лежит равносторонний треугольник со сторонами a, и три боковые грани — равносторонние треугольники с основанием а и бедрами а.
Площадь правильной треугольной пирамиды равна сумме площадей ее основания и трех боковых граней.
S = Sосн + 3•Sбок
Используя формулы площади равностороннего треугольника получим:
см²
Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S на высоту h.
, где
a — сторона правильного треугольника - основания правильной треугольной пирамиды.
Пошаговое объяснение:
1-Как вычислить высоту конуса, зная образующую и радиус основания?
Образующая конуса, высота и радиус основания образуют прямоугольный треугольник.
Поэтому если известна образующая (гипотенуза) и радиус (катет), то высоту можно выразить с теоремы Пифагора.
a² = c² - b², a = √(c² - b²).
a - высота, b - радиус, c - образующая.
2- Ребро куба равно 3 см. Найти объем и площадь полной поверхности куба.
Прямоугольный параллелепипед, все грани которого - квадраты, называется кубом.
Все ребра куба равны, а площадь поверхности куба равна сумме площадей шести его граней, т.е. площади квадрата со стороной H умноженной на шесть.
Площадь поверхности куба равна: S = 6 · H², где (H - высота ребра куба).
S = 6 · 3² = 6 * 9 = 54 см².
Объем куба равен кубу его ребра: V=H³, где H - высота ребра куба.
V= 3³ = 27 см³.
3- Длина, ширина и высота прямоугольного параллелепипеда соответственно равны: 2см, 3см, 1см. Найти объем и площадь полной поверхности параллелепипеда.
Параллелепипедом называется призма, основание которой параллелограмм. Параллелепипед имеет шесть граней, и все они — параллелограммы.
Параллелепипед, четыре боковые грани которого — прямоугольники, называется прямым.
Прямой параллелепипед у которого все шесть граней прямоугольники, называется прямоугольным.
Площадь поверхности прямоугольного параллелепипеда равна удвоенной сумме площадей трех граней этого параллелепипеда:
S = 2 · (Sa + Sb + Sc) = 2 · (ab + bc + ac), где
a – длина, b – ширина, c – высота параллелепипеда.
S = 2 * (2*3 + 3*1 + 2*1) = 2 * (6 + 3 + 2) = 2 * 11 = 22 см²
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
V= SH= a·b·c, где
H - высота параллелепипеда, где a – длина, b – ширина, c – высота параллелепипеда.
V= 2 * 3 * 1 = 6 см³
4- Длина каждого ребра правильной треугольной пирамиды равна 8 см. Высота пирамиды равна 6 см. Найти площадь полной поверхности и объем пирамиды.
Правильная треугольная пирамида — это многогранник, у которого одна грань — основание пирамиды — правильный треугольник, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр основания из вершины.
У правильной треугольной пирамиды в основании лежит равносторонний треугольник со сторонами a, и три боковые грани — равносторонние треугольники с основанием а и бедрами а.
Площадь правильной треугольной пирамиды равна сумме площадей ее основания и трех боковых граней.
S = Sосн + 3•Sбок
Используя формулы площади равностороннего треугольника получим:
см²
Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S на высоту h.
, где
a — сторона правильного треугольника - основания правильной треугольной пирамиды.
h — высота правильной треугольной пирамиды
см3
Пошаговое объяснение:
1)
3%=0,03.
2)
1,1*100%=110%.
Среднее арифметическое=(3+4,5+12)/3=19,5/3=6,5.
3.1
х -наше число.; 28% =0,28.
0,28х=42.
х=42/0,28=150.
№4.
1)18*2,1=37,8 км
2)22*1,9=.41,8 км
3) 37,8+41,8=79,6 км (всего проехал велосипедист)
4)2,1+1,9=4 часа (затратил на 79,6 км)
5) средняя скорость. 79,6/4=19,9 км /час.
№ 5.
1) 680*0,28=190,4 кг (продали в первый день).
680-190,4=489,6 кг (остаток картофеля)
489,6*0,25=122,4 кг (продали во второй день).
680-190,4-122,4=367,2кг (продано в третий день).
№6.
1)30+22=52% преодолели туристы за два дня.
2) 100=52=48% пути в третий день.
Составим пропорцию.
48% это 24 км.
100% это х км.
х=24*100/48=50 км туристы за три дня.
Забыла 3,2.
300*0,87=261.