Происхождение этнонима «татары» и его значение являются до сих пор не ясными и спорными в истории татарского народа. Наиболее подробно этот вопрос рассмотрен Абраром Каримуллиным в его книге «Татары: этнос и этноним» (Казань, 1989). О происхождении названия «татары» он приводит следующие версии. «Одни выводят этимологию этого слова от «горного жителя», где «тат» якобы имеет значение гора, а «ар» – жителя. О.Белозерская происхождение названия «татары» связывает с персидским словом «тептер» (дэфтэр – тетрадь или внесенный в список) – в смысле «колонист». Встречаются попытки объяснить этимологию «татар» от тунгусского слова «та-та» в значении «стрелок из лука», «тащить», «тянуть», что также сомнительно. Известный тюрколог Д.Е. Еремеев происхождение этого этнонима связывает с древнеперсидским словом и народом: в этнониме «татар» первый компонент «тат» можно сопоставить с одним из названий древнего иранского населения. Первоначальное значение слова «тат» было скорее всего – «иранец», «говорящий по-ирански»... В греческой мифологии «тартар» означает потусторонний мир, ад, а «татарин» – жителя ада, подземного царства. Западноевропейские народы именно в смысле «тартар» и воспринимают название «татары». Многие авторы происхождение слова «татар» ведут от китайского языка. Под именем «та-та», «да-да» или «татан» еще в V веке в Северо-Восточной Монголии и Маньчжурии жило одно монгольское племя.
1) Пусть Xf, хг и х3 — длины ребер, выходящих из одной вершины некоторого прямоугольного параллелепипеда.
2) Найти длины ребер такого прямоугольного параллелепипеда, у которого сумма всех ребер, полная поверхность и объем соответственно равны 48 см, 88 см2 и 48 см9.
Длины ребер, исходящих из общей вершины некоторого прямоугольного параллелепипеда, являются корнями уравнения а*3+ ~\-bx*-\-cx-}-d=Q.
Определить длину диагонали этого параллелепипеда.
Найти площадь поверхности сферы, описанной около прямоугольного параллелепипеда, три измерения которого являются корнями уравнения Х3+шг2+йлг+с=0.
] Доказать, что сумма квадратов длин всех ребер параллелепипеда равна сумме квадратов длин всех его четырех диагоналей.
Доказать, что из всех прямоугольных параллелепипедов С данной суммой всех ребер наибольший объем имеет куб.
Диагональ прямоугольного параллелепипеда рагаа 13 см, _а диагонали его боковых граней равны 4У10 см и 3]/17 см.
В прямом параллелепипеде стороны основания равны а и Ь, острый угол между ними содержит 60°.
Большая диагональ основания конгруэнтна меньшей диагонали параллелепипеда.
Основанием прямого параллелепипеда служит ромб.
В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 см и 4 см и острым углом 60°.
Основанием параллелепипеда служит квадрат.
Определить полную поверхность этого параллелепипеда.
Определить объем прямоугольного параллелепипеда, диагональ которого равна / и составляет о одной гранью угол 30°, а с другой 45°.
Основанием прямого параллелепипеда служит ромб, площадь которого равна Q.
Стороны основания прямоугольного параллелепипеда равны а и Ь.
Стороны основания прямоугольного параллелепипеда равны а и Ь.
Определить объем прямоугольного параллелепипеда, если его диагональ равна d, а длины ребер относятся, как т: п: р.
В прямом параллелепипеде стороны основания равны а и Ь и образуют угол 30°.
Стороны основания прямоугольного параллелепипеда относятся, как т: п, а диагональное сечение представляет собой квадрат с площадью, равной Q.
Измерения прямоугольного параллелепипеда равны 2 см, 3 см и 6 см.
Из медной болванки, имеющей форму пря--моугольного параллелепипеда размером 80 смХ20 смХ Х5 см, прокатывается лист толщиной 1 мм.
В наклонном параллелепипеде проекция бокового ребра на плоскость основания равна 5 дм, а высота равна 12 дм.
2) Найти длины ребер такого прямоугольного параллелепипеда, у которого сумма всех ребер, полная поверхность и объем соответственно равны 48 см, 88 см2 и 48 см9.
Длины ребер, исходящих из общей вершины некоторого прямоугольного параллелепипеда, являются корнями уравнения а*3+ ~\-bx*-\-cx-}-d=Q.
Определить длину диагонали этого параллелепипеда.
Найти площадь поверхности сферы, описанной около прямоугольного параллелепипеда, три измерения которого являются корнями уравнения Х3+шг2+йлг+с=0.
] Доказать, что сумма квадратов длин всех ребер параллелепипеда равна сумме квадратов длин всех его четырех диагоналей.
Доказать, что из всех прямоугольных параллелепипедов С данной суммой всех ребер наибольший объем имеет куб.
Диагональ прямоугольного параллелепипеда рагаа 13 см, _а диагонали его боковых граней равны 4У10 см и 3]/17 см.
В прямом параллелепипеде стороны основания равны а и Ь, острый угол между ними содержит 60°.
Большая диагональ основания конгруэнтна меньшей диагонали параллелепипеда.
Основанием прямого параллелепипеда служит ромб.
В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 см и 4 см и острым углом 60°.
Основанием параллелепипеда служит квадрат.
Определить полную поверхность этого параллелепипеда.
Определить объем прямоугольного параллелепипеда, диагональ которого равна / и составляет о одной гранью угол 30°, а с другой 45°.
Основанием прямого параллелепипеда служит ромб, площадь которого равна Q.
Стороны основания прямоугольного параллелепипеда равны а и Ь.
Стороны основания прямоугольного параллелепипеда равны а и Ь.
Определить объем прямоугольного параллелепипеда, если его диагональ равна d, а длины ребер относятся, как т: п: р.
В прямом параллелепипеде стороны основания равны а и Ь и образуют угол 30°.
Стороны основания прямоугольного параллелепипеда относятся, как т: п, а диагональное сечение представляет собой квадрат с площадью, равной Q.
Измерения прямоугольного параллелепипеда равны 2 см, 3 см и 6 см.
Из медной болванки, имеющей форму пря--моугольного параллелепипеда размером 80 смХ20 смХ Х5 см, прокатывается лист толщиной 1 мм.
В наклонном параллелепипеде проекция бокового ребра на плоскость основания равна 5 дм, а высота равна 12 дм.