Х-боковая сторона. тогда основание равно 12-2х высота равна √(х²-(6-х)²)=√(12х-36) Выразим площадь как функцию от переменной х. f(x)=1/2*(12-2x)*√(12x-36) f(x)=(6-x)√(12x-36). Производная этой функции равна: y' = (3√3(x-4))/√(x-3). Приравняв её нулю (достаточно числитель), находим х = 4. То есть, наибольшую площадь при заданном периметре имеет равносторонний треугольник.
Х-боковая сторона,тогда основание 12-2х высота равна √(х²-(6-х)²)=√(12х-36) f(x)=1/2*(12-2x)*√(12x-36) f(x)=(6-x)√(12x-36) f`(x)=-√(12x-36)+12(6-x)/2√(12x-36)=(-12x+36+36-6x)/√(12x-36)= =(72-18x)√(12x-36)=0 72-18x=0 18x=72 x=4-боковая сторона 12-8=4-основание Следовательно треугольник равносторонний ответ основание равно 4
тогда основание равно 12-2х
высота равна √(х²-(6-х)²)=√(12х-36)
Выразим площадь как функцию от переменной х.
f(x)=1/2*(12-2x)*√(12x-36)
f(x)=(6-x)√(12x-36).
Производная этой функции равна:
y' = (3√3(x-4))/√(x-3).
Приравняв её нулю (достаточно числитель), находим х = 4.
То есть, наибольшую площадь при заданном периметре имеет равносторонний треугольник.
высота равна √(х²-(6-х)²)=√(12х-36)
f(x)=1/2*(12-2x)*√(12x-36)
f(x)=(6-x)√(12x-36)
f`(x)=-√(12x-36)+12(6-x)/2√(12x-36)=(-12x+36+36-6x)/√(12x-36)=
=(72-18x)√(12x-36)=0
72-18x=0
18x=72
x=4-боковая сторона
12-8=4-основание
Следовательно треугольник равносторонний
ответ основание равно 4