В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Amirmusta
Amirmusta
22.02.2023 06:36 •  Математика

Периметр треугольника равен 23,5 см. Первая сторона короче второй в2 раза, а третья сторона короче на 4 см. Найтһдите длины каждой стороны

Показать ответ
Ответ:
remboibragimov
remboibragimov
01.01.2020 13:03

7.

Из обратно теоремы о пропорциональных отрезков, если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные или пропорциональные между собой отрезки, начиная от вершины, то такие прямые параллельны. Отсюда следует, что:

Отрезки MN и NK параллельны отрезкам BC и AD, а значит, и весь отрезок MK || основам трапеции (BC || AD). MK — средняя линия трапеции, т.к. точка М делит сторону AB пополам.

Формула для нахождения ср. линии трапеции:

m=\frac{a+b}{2} ,

где a и b — основы трапеции.

Подставляем значения:

MK=\frac{BC+AD}{2} = \frac{10+14}{2} = \frac{24}{2} = 12

ответ: MK = 12.

8. EM || BC || AD по теореме о пропорциональных отрезках. EM — средняя линия трапеции. Все отрезки, образующие среднюю линию EM параллельны основам трапеции.  

Найдем EM:

EM=\frac{BC+AD}{2} = \frac{16+6}{2} = \frac{22}{2} = 11

Средняя линия делит диагонали пополам.

Р-м ΔABC и ΔDCC: EK и LM — средние линии.  

Средняя линия треугольника равна половине стороны к которой она параллельна. Находим длины этих отрезков.

EK = LM =  DB/2 = 6/2 = 3.

Находим KL: EM − (EK+LM) = 11−(3+3) = 5

ответ. KL = 5.

9. ABCD — равнобедренная трапеция. MF — средняя линия, AM = MB = CF = FD = 2. BC = EK = 2. BE и CK — высоты трапеции.

Р-м прямоугольные треугольники ABE и DKC: ∠A = ∠D = 60°. Значит ∠AEB и ∠KCD — по 30°.

Катет, лежажий напротив угла, синус которого 30°, равен половине гипотенузе. AE/KD = AB/CD/2= 2.

AD = 2*2+2 = 6

MF = \frac{BC+AD}{2}=\frac{2+6}{2}=4

ответ: MF = 4.

0,0(0 оценок)
Ответ:
raiskadem
raiskadem
01.01.2020 13:03

7.

Из обратно теоремы о пропорциональных отрезков, если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные или пропорциональные между собой отрезки, начиная от вершины, то такие прямые параллельны. Отсюда следует, что:

Отрезки MN и NK параллельны отрезкам BC и AD, а значит, и весь отрезок MK || основам трапеции (BC || AD). MK — средняя линия трапеции, т.к. точка М делит сторону AB пополам.

Формула для нахождения ср. линии трапеции:

m=\frac{a+b}{2} ,

где a и b — основы трапеции.

Подставляем значения:

MK=\frac{BC+AD}{2} = \frac{10+14}{2} = \frac{24}{2} = 12

ответ: MK = 12.

8. EM || BC || AD по теореме о пропорциональных отрезках. EM — средняя линия трапеции. Все отрезки, образующие среднюю линию EM параллельны основам трапеции.  

Найдем EM:

EM=\frac{BC+AD}{2} = \frac{16+6}{2} = \frac{22}{2} = 11

Средняя линия делит диагонали пополам.

Р-м ΔABC и ΔDCC: EK и LM — средние линии.  

Средняя линия треугольника равна половине стороны к которой она параллельна. Находим длины этих отрезков.

EK = LM =  DB/2 = 6/2 = 3.

Находим KL: EM − (EK+LM) = 11−(3+3) = 5

ответ. KL = 5.

9. ABCD — равнобедренная трапеция. MF — средняя линия, AM = MB = CF = FD = 2. BC = EK = 2. BE и CK — высоты трапеции.

Р-м прямоугольные треугольники ABE и DKC: ∠A = ∠D = 60°. Значит ∠AEB и ∠KCD — по 30°.

Катет, лежажий напротив угла, синус которого 30°, равен половине гипотенузе. AE/KD = AB/CD/2= 2.

AD = 2*2+2 = 6

MF = \frac{BC+AD}{2}=\frac{2+6}{2}=4

ответ: MF = 4.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота