Период обращения сатурна вокруг солнца равен 29,46 земного года, а марса- 1,88 земного года. на каком расстоянии от солнца находится сатурн, если среднее расстояние удаления марса от солнца равно 228 млн км
В сечении имеем равнобедренный треугольник МРК. МК = МР. Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4. Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP: (по условию МД = a/2, а КД = РД = a/4) PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) = = √((4a²+a²-2a²)/16 = (a√3) / 4. Высота h треугольника РМК равна: h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8. Искомая площадь равна: S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.
количество проданных билетов на один и тот же
фильм за четыре дня подряд, и заметил, что число проданных билетов
образует закономерную последовательность: 104, 108, 110, 114, 116
Сколько билетов будет продано в шестой день, если закономерность не
зменшится?сколько будет продано билетов на шестой день
Пошаговое объяснение:
количество проданных билетов на один и тот же
фильм за четыре дня подряд, и заметил, что число проданных билетов
образует закономерную последовательность: 104, 108, 110, 114, 116
Сколько билетов будет продано в шестой день, если закономерность не
зменшится?сколько будет продано билетов на шестой день
Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4.
Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP:
(по условию МД = a/2, а КД = РД = a/4)
PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) =
= √((4a²+a²-2a²)/16 = (a√3) / 4.
Высота h треугольника РМК равна:
h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8.
Искомая площадь равна:
S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.