первая скважина заполняет водой резервуар за 30 минут, а вторая- за 50 минут. Из первой скважины за 1 минуту поступает 250 литров воды. Сколько литров воды поступает из второй скважины за 1 минуту? Решите пропорцией
ответ:В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
То есть, если последовательность
3
;
6
;
12
;
24
;
48
…
обозначить как
a
n
, то можно записать, что
a
1
=
3
,
a
2
=
6
,
a
3
=
12
,
a
4
=
24
и так далее.
Пошаговое объяснение:Иными словами, для последовательности
Сергей разделил задуманное им натуральное число на 6 потом разделил задуманное число на семь затем разделил задуманное число на 8 получив в каждом из случаев некоторый остаток сумма этих остатков равна 18 какой остаток даёт задуманное число при делении на 28.
Пусть задумано Ч.
Остатки : первый меньше 6, второй меньше 7, третий меньше 8. Значит их сумма меньше либо равна 18.
Первый остаток 5, второй 6, третий 7.
Ч=6К+5
6К=7М+6
7М=8Н+7
К,М,Н -целые
6К=7*8*М*Н+49+6=56МН+55
Ч=56МН+60
56*М*Н на 28 делится.
Значит остаток от деления на 28 равен остатку от деления 60 на 28, т.е. равен 4.
(заметим, правда, что такого числа Ч не существует. Из последнего равенства М-нечетное, а из предыдущего -четное)
ответ:В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
То есть, если последовательность
3
;
6
;
12
;
24
;
48
…
обозначить как
a
n
, то можно записать, что
a
1
=
3
,
a
2
=
6
,
a
3
=
12
,
a
4
=
24
и так далее.
Пошаговое объяснение:Иными словами, для последовательности
a
n
=
{
3
;
6
;
12
;
24
;
48
;
96
;
192
;
384
…
}
.
порядковый номер элемента
1
2
3
4
5
6
7
8
…
обозначение элемента
a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
…
значение элемента
3
6
12
24
48
96
192
384
…
4
Пошаговое объяснение:
Сергей разделил задуманное им натуральное число на 6 потом разделил задуманное число на семь затем разделил задуманное число на 8 получив в каждом из случаев некоторый остаток сумма этих остатков равна 18 какой остаток даёт задуманное число при делении на 28.
Пусть задумано Ч.
Остатки : первый меньше 6, второй меньше 7, третий меньше 8. Значит их сумма меньше либо равна 18.
Первый остаток 5, второй 6, третий 7.
Ч=6К+5
6К=7М+6
7М=8Н+7
К,М,Н -целые
6К=7*8*М*Н+49+6=56МН+55
Ч=56МН+60
56*М*Н на 28 делится.
Значит остаток от деления на 28 равен остатку от деления 60 на 28, т.е. равен 4.
(заметим, правда, что такого числа Ч не существует. Из последнего равенства М-нечетное, а из предыдущего -четное)