В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Relax111111
Relax111111
21.02.2023 14:57 •  Математика

Пидприемство отримало замовлення на виготовлення стильцив. у перший день було выконано 25% усього замовлення,у другий день 47% а в третий день була виготовлена решта 84 стильцив сколько стильцив було виготовленно

Показать ответ
Ответ:
яшка37
яшка37
25.02.2021 20:29
Рациональное число - это дробь с целым числителем и натуральным знаменателем. 

Пусть существует несократимая (это важно) дробь m/n = √5. Очевидно, что так как n>0, то и m>0

Проведем цепочку рассуждений

1)
m²/n² = 5
m² = 5n²

2)
Итак, мы видим, что m² делится на 5. Так как число 5 - простое, мы понимаем, что m тоже должно делиться на 5. Почему так? Если в разложении m на простые множители отсутствует 5, то и в m² не будет 5

3) Итак, m делится на 5, значит m² делится на 25, то есть m² = 25p, где p-целое

4) Итак,
m² = 5n² = 25p
n² = 5p

Мы видим, что n² тоже делится на 5, а значит, n тоже делится на 5

5) И мы получаем, что m и n должны делиться на 5. Но это противоречит исходному предположению о несократимости дроби m/n

Значит, не существует такой рациональной дроби m/n, которая равнялась бы корню из 5
0,0(0 оценок)
Ответ:
HAAMER12
HAAMER12
25.02.2021 20:29
Ну пусть существует такое рациональное число, квадрат которого равен 5. Или 3. Или Р (где Р - ПРОСТОЕ число) . Рациональное число - это такое, которое можно представить в виде дроби m/n, пиричём дроб будем считать несократимой. Значит, квадрат его будет m²/n² = 3. Откуда m² = 3n². Но если квадрат ЦЕЛОГО числа делится на 3, или на 5, или на любое другое ПРОСТОЕ число, то и само это число должно делиться на 3 . То есть число m можно представить как m = 3k, m² = 9k² и отсюда 3k²=n². Значит, n тоже делится на 3. То ест дробь m/n получается сократимой - а мы сначала предположили, что она НЕ сократима. То есть пришли к противоречию. Отсюда и следует, что никакого рационального числа, квадрат которого равен простому числу, не существует.
С четвёркой такой трюк не проходит, потому что 4 - это 2 в квадрате. С восьмёркой проходит, но это двухходовка: 8 = 2*2².
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота