Пирамида пересечена плоскостью, параллельной основанию, которая делит высоту пирамиды в отношении 2:6, считая от вершины. Вычисли площадь основания, если площадь сечения равна 16 дм²
1) у = -х² + 12х + 5 Найдите критические точки функции и определите, какие из них является точками максимума и минимума. Находим производную и приравниваем её нулю: y' = -2x + 12 = 0. x = 12/2 = 6. То есть критическая точка только одна. Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен). У такой параболы есть только максимум в её вершине Хо. Хо = -в/2а = -12/2*(-1) = 6. Можно провести исследование по знаку производной вблизи критической точки. х = 5.5 6 6.5 y' = -2x + 12 1 0 -1. Если производная меняет знак с + на - то это максимум функции, минимума нет.
3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3]. y' = 4x³ -16x = 0. 4x(x²-4) = 0. Имеем 3 корня: х = 0, х = 2 и х = -2. х = -2.5 -2 -1.5 -0.5 0 0.5 1.5 2 2.5 y' = 4x³ -16x -22.5 0 10.5 7.5 0 -7.5 -10.5 0 22.5. х = -2 и 2 это минимум, у = -25. х = 0 это максимум, у = -9
Если сложить яблоки Бориса и Марата и разделить их на 4 (Марат+Борис+друг1+друг2), то получится целое число.
Итак, возможные варианты количества яблок: У Бориса 12,13,14 У Марата 10,11,12
Теперь будем методом "веера" складывать яблоки Бориса и Марата и получим ответ: 12+10=22 (не делится на 4) 12+11=23 (не делится на 4) 12+12=24 (делится на 4, ответ 6)
13+10=23 (не делится на 4) 13+11=24 (делится на 4, ответ 6) 13+12=25 (не делится на 4)
14+10=24 (делится на 4, ответ 6) 14+11=25 (не делится на 4) 14+12=26 (не делится на 4)
В результате имеем следующие возможные количества яблок у обоих мльчиков Борис Марат 12 12 13 11 14 10
Найдите критические точки функции и определите, какие из них является точками максимума и минимума.
Находим производную и приравниваем её нулю:
y' = -2x + 12 = 0.
x = 12/2 = 6.
То есть критическая точка только одна.
Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен).
У такой параболы есть только максимум в её вершине Хо.
Хо = -в/2а = -12/2*(-1) = 6.
Можно провести исследование по знаку производной вблизи критической точки.
х = 5.5 6 6.5
y' = -2x + 12 1 0 -1.
Если производная меняет знак с + на - то это максимум функции, минимума нет.
3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3].
y' = 4x³ -16x = 0.
4x(x²-4) = 0.
Имеем 3 корня: х = 0, х = 2 и х = -2.
х = -2.5 -2 -1.5 -0.5 0 0.5 1.5 2 2.5
y' = 4x³ -16x -22.5 0 10.5 7.5 0 -7.5 -10.5 0 22.5.
х = -2 и 2 это минимум, у = -25.
х = 0 это максимум, у = -9
Яблоки Марата: (9;13)
Если сложить яблоки Бориса и Марата и разделить их на 4 (Марат+Борис+друг1+друг2), то получится целое число.
Итак, возможные варианты количества яблок:
У Бориса 12,13,14
У Марата 10,11,12
Теперь будем методом "веера" складывать яблоки Бориса и Марата и получим ответ:
12+10=22 (не делится на 4)
12+11=23 (не делится на 4)
12+12=24 (делится на 4, ответ 6)
13+10=23 (не делится на 4)
13+11=24 (делится на 4, ответ 6)
13+12=25 (не делится на 4)
14+10=24 (делится на 4, ответ 6)
14+11=25 (не делится на 4)
14+12=26 (не делится на 4)
В результате имеем следующие возможные количества яблок у обоих мльчиков
Борис Марат
12 12
13 11
14 10