Площадь осевого сечения цилиндра равна 24 см2. Найдите площадь боковой и площадь полной поверхности цилиндра, если диаметр цилиндра равен 4 см. №2. Площадь боковой поверхности конуса равна 36 см2. Найдите площадь осевого сечения и площадь полной поверхности конуса, если высота конуса равна 12см.
№3. Расстояние от центра шара до секущей плоскости 6 дм. Найдите площадь сечения шара, если радиус шара равен 8 дм.
2,3,5
Пошаговое объяснение:
Пусть s = p
4 + q
4 + r
4 − 3 — простое число. s > 2
4 − 3 = 13, поэтому s
нечетно и s 6= 3. Если p = q = r, то s делится на 3 и является составным.
Поскольку s нечетно, ровно одно из чисел p, q и r равно 2. Пусть для
определенности r = 2. Предположим, что ни одно из чисел p и q не делится на 3. Поскольку квадраты чисел, не делящихся на 3, дают остаток 1
при делении на 3, s кратно 3 и, значит, составное. Поэтому одно из (простых) чисел p,q делится на 3, т. е. равно 3, для определенности можно
считать, что q = 3. Таким образом, осталось найти все простые числа p,
для которых число s = p
4 + 34 + 24 − 3 = p
4 + 94 является простым. Если
p не делится на 5, то p
4 дает остаток 1 при делении на 5, и значит, число
s = p
4 + 94 составное, поскольку делится на 5. Поэтому p = 5. Осталось
заметить, что число s = 54 + 94 = 719 является простым.
Прежде чем вычислить сумму квадратов этих чисел,
найдём эти числа, для этого обозначим эти числа за (х) и (у),
тогда согласно условия задачи:
х+у=15 (1)
Средне-арифметическое этих двух чисел равно:
(х+у)/2
Средне геометрическое этих двух чисел равно:
√(х*у)
25% средне геометрического числа равно:
25% *√(ху) :100%=0,25*√(ху)=0,25√(ху)
Согласно условия задачи составим второе уравнение:
(х+у)/2 - √(ху)=0,25√(ху)
(х+у)/2=0,25√(ху)+√(ху)
(х+у)/2=1,25√(ху)
(х+у)=2*1,25√(ху)
х+у=2,5√(ху) (2)
Решим получившуюся систему из двух уравнений:
х+у=15
х+у=2,5√(ху)
Из первого уравнения системы уравнений найдём значение (х)
х=15-у -подставим значение (х) во второе уравнение
15-у+у=2,5√[(15-y)*y]
15=2,5√(15y-y²) чтобы избавиться от иррациональности в правой части, возведём левую и правую части уравнения в квадрат:
225=6,25*(15у-у²)
225=93,75у-6,25у²
6,25у²-93,75у+225=0
у1,2=(93,75+-D)/2*6,25
D=√(93,75² -4*6,25*225)=√(8789,0625-5625)=√3164,0625=56.25
у1,2=(93,75+-56,25)/12,5
у1=(93,75+56,26)/12,5=150/12,5=12
у2=(93,75-56,25)/12,5=37,5/12,5=3
Подставим значения (у1) и (у2) в х=15-у
х1=15-12=3
х2=15-3=12
Из получившихся чисел можно сделать вывод, что эти два числа 12 и 3
Отсюда сумма квадратов этих чисел равна:
12²+3²=144+9=153
ответ: 153