Площадь треугольника ABC равна 144. Точка M соответствует стене AB, где AM: AB = 5:12, точка N соответствует стене BC, где BN: BC = 8:12, точка K соответствует стене AC, где CK: AC = 6:12. Найдите площадь треугольника MNK. (Переводил с казахского в переводе могут быть ошибки)
Наибольший результат получим, если числа KAN и GA будет как можно больше, а число ROO как можно меньше.
Начнем с чисел KAN и GA: K=9 как цифра в самом старшем разряде. Далее цифрам А и G необходимо присвоить значения 8 и 7, причем именно в таком порядке, поскольку А встретится еще раз в разряде единиц, поэтому нам выгодно присвоить ей наибольшее значение. Последняя цифра N=6.
Для числа ROO поступим наоборот: старшем разряду присвоим наименьшее возможное значение: R=1, далее O=2.
Итого: 986+78-122=942
ответ: 942
а) По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={3+4+5 \over 2}=6
p=
2
3+4+5
=6
S=\sqrt{6 \cdot (6-3) \cdot (6-4) \cdot (6-5)} = 6
S=
6⋅(6−3)⋅(6−4)⋅(6−5)
=6
S = 6S=6
б)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={13+14+15 \over 2}=21
p=
2
13+14+15
=21
S=\sqrt{21 \cdot (21-13) \cdot (21-14) \cdot (21-15)} = 84
S=
21⋅(21−13)⋅(21−14)⋅(21−15)
=84
S = 84S=84
в)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={31+45+51 \over 2}=63.5
p=
2
31+45+51
=63.5
S=\sqrt{63.5 \cdot (63.5-31) \cdot (63.5-45) \cdot (63.5-51)} = 690.827
S=
63.5⋅(63.5−31)⋅(63.5−45)⋅(63.5−51)
=690.827
S = 690.827S=690.827
г)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={9+21+15 \over 2}=22.5
p=
2
9+21+15
=22.5
S=\sqrt{22.5 \cdot (22.5-9) \cdot (22.5-21) \cdot (22.5-15)} = 58.457
S=
22.5⋅(22.5−9)⋅(22.5−21)⋅(22.5−15)
=58.457
S = 58.457S=58.457
д)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={30+40+50 \over 2}=60
p=
2
30+40+50
=60
S=\sqrt{60 \cdot (60-30) \cdot (60-40) \cdot (60-50)} = 600
S=
60⋅(60−30)⋅(60−40)⋅(60−50)
=600
S = 600S=600
Пошаговое объяснение: