Плоский кут при вершині правильної трикутної піраміди дорівнює 60 градусів, а бічне ребро - 6 см. обчисліть площу бічної поверхні піраміди. плоский угол при вершине правильной треугольной пирамиды равна 60 градусов, а боковое ребро - 6 см. вычислите площадь боковой поверхности пирамиды. а) см² ; б) 27 см² ; в) 18 см² ; г) см²
1) Пусть количество джипов=х, тогда после обмена количество джипов сократилось на 10% , т.е. стало 100%-10%=90% =0,9х (90%:100%=0,9) джипов. 2) Количество джипов и спорткаров вначале было поровну, т.е. х. После обмена количество спорткаров увеличилось на 25 %, т.е. стало 100%+25%=125%=1,25х (125%:100%=1,25) спорткаров. 3) Спорткаров стало больше, чем джипов на 14 штук: 1,25х-0,9х=14 0,35х=14 х=40 (спорткаров и 40 джипов было изначально). 4) Посчитаем количество спорткаров после обмена: 1,25х=1,25*40=50 ответ: после обмена у Сидорова стало 50 спорткаров.
В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
2) Количество джипов и спорткаров вначале было поровну, т.е. х.
После обмена количество спорткаров увеличилось на 25 %, т.е. стало 100%+25%=125%=1,25х (125%:100%=1,25) спорткаров.
3) Спорткаров стало больше, чем джипов на 14 штук:
1,25х-0,9х=14
0,35х=14
х=40 (спорткаров и 40 джипов было изначально).
4) Посчитаем количество спорткаров после обмена:
1,25х=1,25*40=50
ответ: после обмена у Сидорова стало 50 спорткаров.
х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5).
Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3.
S = (2+5)/2*3 =10,5.
Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6.
Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.