Рациональное число єто число которое можно записать в виде дроби от отношения целого числа и натурального числа т/е/ в виде где m є Z, n є N
Любое целое число можно подать виде отношения этого числа к числу 1 так и т.д.
так как
то сумма, разность и произведение рациональных чисел являются рациональным числом
за исключением случаев когда второе число 0, а на 0 делить нельзя отношение двух рациональных чисел будет рациональным числом так как
Периодичная дробь это десятичная дробь, в записе которой после запятой с некоторого момента начинается повторятся конечный набор записи цифр напр. 4.456(566)=4.456566566566566... 566 бесконечно повторяются в записи, 566 - период указанной дроби
Пошаговое объяснение:
194.
1) 13:6 = 13/6 = 2 1/6
2) 43:5 = 43/5 = 8 3/5
3) 70:11 = 70/11 = 6 4/11
195.
1) 2 1/6 = 13/6
2) 1 12/17 = 29/17
3) 4 4/5 = 24/5
4) 12 7/20 = 247/20
196.
1) 9+3/17 = 9 3/17
2) 9/72+5 = 5 1/8
3) 4 5/18 + 2 4/18 = 6 9/18 = 6 1/2
4) 6 7/15 - 2 3/15 = 4 4/15
5) 9 11/16 + 4 3/16 - 2 2/16 = 13 14/16 - 2 2/16 = 11 12/16 = 11 3/4
6) 15 7/10 + 2 2/10 - 4 1/10 = 17 9/10 - 4 1/10 = 13 8/10 = 13 4/5
197.
1) 7 9/16 + 8 7/16 = 15 16/16 = 16
2) 4 9/19 + 5 13/19 = 9 22/19 = 10 3/19
3) 1 - 16/25 = 25/25 - 16/25 = 9/25
4) 4 - 1 7/12 = 3 12/12 - 1 7/12 = 2 5/12
5) 6 5/14 - 2 11/14 = 5 19/14 - 2 11/14 = 3 8/14 = 3 4/7
6) 19 11/35 - 12 29/35 = 18 46/35 - 12 29/35 = 6 17/35
т/е/ в виде где m є Z, n є N
Любое целое число можно подать виде отношения этого числа к числу 1
так
и т.д.
так как
то сумма, разность и произведение рациональных чисел являются рациональным числом
за исключением случаев когда второе число 0, а на 0 делить нельзя
отношение двух рациональных чисел будет рациональным числом так как
Периодичная дробь это десятичная дробь, в записе которой после запятой с некоторого момента начинается повторятся конечный набор записи цифр
напр. 4.456(566)=4.456566566566566...
566 бесконечно повторяются в записи, 566 - период указанной дроби